K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2021

p = 1+ \(\dfrac{x+1}{\sqrt{x}}\) sẽ lớn hơn -1 vì \(\sqrt{x}\) => x dương =>  \(\dfrac{x+1}{\sqrt{x}}\)> 0

Ta có: \(P-1=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}-\dfrac{\sqrt{x}}{\sqrt{x}}\)

\(=\dfrac{x+1}{\sqrt{x}}>0\forall x\) thỏa mãn ĐKXĐ

Suy ra: P>1

30 tháng 10 2020

1. \(VT=\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)

\(=\sqrt{2^2+2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}-\sqrt{2^2-2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}\)

\(=\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=2+\sqrt{3}-2+\sqrt{3}=VP\)

30 tháng 10 2020

Bài 1.

Ta có : \(\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)

\(=\sqrt{3+4\sqrt{3}+4}-\sqrt{3-4\sqrt{3}+4}\)

\(=\sqrt{\left(\sqrt{3}+2\right)^2}-\sqrt{\left(\sqrt{3}-2\right)^2}\)

\(=\left|\sqrt{3}+2\right|-\left|\sqrt{3}-2\right|\)

\(=\sqrt{3}+2-\left(2-\sqrt{3}\right)\)

\(=\sqrt{3}+2-2+\sqrt{3}=2\sqrt{3}\left(đpcm\right)\)

a) Ta có: \(P=\left(\dfrac{\sqrt{x}}{x\sqrt{x}-1}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\)

\(=\dfrac{\sqrt{x}+x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{\sqrt{x}+1}\)

\(=\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

 

17 tháng 6 2021

a, \(P=\left(\frac{\sqrt{x}}{x\sqrt{x}-1}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)

\(=\left(\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)

\(=\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{x+\sqrt{x}+1}{\sqrt{x}+1}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

b, Vì x > 1, g/s : Thay x = 4 vào P ta được : 

\(\frac{\sqrt{4}+1}{\sqrt{4}-1}=\frac{3}{1}=3\)

Thay x = 4 vào căn P ta được : \(\sqrt{\frac{\sqrt{4}+1}{\sqrt{4}-1}}=\sqrt{3}\)

mà \(3>\sqrt{3}\Rightarrow P>\sqrt{P}\)với x > 1 

17 tháng 10 2023

\(P=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\)

\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\)

\(=\dfrac{-3\sqrt{x}-3}{\left(\sqrt{x}+3\right)^2}\)

\(P=-\dfrac{1}{3}\)

\(\Rightarrow\left(\sqrt{x}+3\right)^2=3\sqrt{x}+3\)

\(\Leftrightarrow x-\sqrt{x}+6=0\)

\(\Leftrightarrow\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)=0\)

\(\Leftrightarrow x=9\left(Vì\sqrt{x}+2>0\right)\)

\(P=-\left(\dfrac{3\sqrt{x}+3}{\left(\sqrt{x}+3\right)^2}\right)=-\left(\dfrac{3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)^2}\right)< -3< -1\)

19 tháng 10 2021

a: TXĐ: D=[0;+\(\infty\))\{1}

Ta có: \(P=\left(\dfrac{3}{\sqrt{x}+1}-\dfrac{1}{x-1}\right):\dfrac{1}{\sqrt{x}+1}\)

\(=\dfrac{3\sqrt{x}-3-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{1}\)

\(=\dfrac{3\sqrt{x}-4}{\sqrt{x}-1}\)