K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2018

Ta có

N   =   x 3   +   3 x 2 y   +   3 x y 2   +   y 3   +   x 2   +   2 x y   +   y 2     =   ( x 3   +   3 x 2 y   +   3 x y 2   +   y 3 )   +   ( x 2   +   2 x y   +   y 2 )     =   ( x   +   y ) 3   +   ( x   +   y ) 2   =   ( x   +   y ) 2 ( x   +   y   +   1 )

Từ đề bài x = 10 – y ó x + y = 10. Thay x + y = 10 vào N = ( x   +   y ) 2 (x + y + 1) ta được

N = 10 2 (10 + 1) = 1100

Suy ra N > 1000 khi x = 10 – y

Đáp án cần chọn là: D

18 tháng 10 2020

Ta có (a + b + c)2 \(\ge0\forall a;b;c\inℝ\)

=> a2 + b2 + c2 + 2ab + 2bc + 2ca \(\ge\)0

=> a2 + b2 + c2 \(\ge\)0 - (2ab + 2bc + 2ca)

=> a2 + b2 + c2 \(\le\)2ab + 2bc + 2ca

=> a2 + b2 + c2 \(\le\)2(ab + bc + ca) 

Dấu "=" xảy ra <=> a + b + c = 0

18 tháng 10 2020

Xí bài 2 ý a) trước :>

4x2 + 2y2 + 2z2 - 4xy - 4xz + 2yz - 6y - 10z + 34 = 0

<=> ( 4x2 - 4xy + y2 - 4xz + 2yz + z2 ) + ( y2 - 6y + 9 ) + ( z2 - 10z + 25 ) = 0

<=> [ ( 4x2 - 4xy + y2 ) - 2( 2x - y )z + z2 ] + ( y - 3 )2 + ( z - 5 )2 = 0

<=> [ ( 2x - y )2 - 2( 2x - y )z + z2 ] + ( y - 3 )2 + ( z - 5 )2 = 0

<=> ( 2x - y - z )2 + ( y - 3 )2 + ( z - 5 )2 = 0

Ta có : \(\hept{\begin{cases}\left(2x-y-z\right)^2\\\left(y-3\right)^2\\\left(z-5\right)^2\end{cases}}\ge0\forall x,y,z\Rightarrow\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2\ge0\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-y-z=0\\y-3=0\\z-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=3\\z=5\end{cases}}\)

Thế vào T ta được : 

\(T=\left(4-4\right)^{2014}+\left(3-4\right)^{2014}+\left(5-4\right)^{2014}\)

\(T=0+1+1=2\)

làm nhiều rồi 

hehe

hihi

30 tháng 8 2019

3/

a/ \(A=\left(x-y\right)^2+\left(x+y\right)^2.\)

\(A=\left(x^2-2xy+y^2\right)+\left(x^2+2xy+y^2\right)\)

\(A=x^2-2xy+y^2+x^2+2xy+y^2\)

\(A=2x^2+2y^2\)

b/ \(B=\left(2a+b\right)^2-\left(2a-b\right)^2\)

\(B=\left(4a^2+4ab+b^2\right)-\left(4a^2-4ab+b^2\right)\)

\(B=4a^2+4ab+b^2-4a^2+4ab-b^2\)

\(B=8ab\)

c/ \(C=\left(x+y\right)^2-\left(x-y\right)^2\)

\(C=\left(x^2+2xy+y^2\right)-\left(x^2-2xy+y^2\right)\)

\(C=x^2+2xy+y^2-x^2+2xy-y^2\)

\(C=4xy\)

d/ \(D=\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)

\(D=\left(4x^2-4x+1\right)-2\left(4x^2-12x+9\right)+4\)

\(D=4x^2-4x+1-8x^2+24x-18+4\)

\(D=-4x^2+20x-13\)

12 tháng 3 2020

Đề thiếu x nguyên nhé bạn :)

\(x^2+10x+10=\left(x^2+10x+25\right)-15\)

Đặt \(x^2+10x+10=a^2\left(a\in Z\right)\)

Khi đó:\(\left(x+5\right)^2-a^2=15\)

\(\Leftrightarrow\left(x+5-a\right)\left(x+5+a\right)=15\)

Đến đây bạn lập ước ra ngay nhé ! Có điều hơi mệt tí,hihi !

sai rồi bạn. phải là \(a^2-\left(x+5\right)^2\)chứ

27 tháng 9 2019

Làm từng câu nhé :D

27 tháng 9 2019

a) \(2a^{n+2}b^n-18a^nb^{n+2}\)

\(=2a^nb^n\left(a^2-9b^2\right)\)

\(=2a^nb^n\left(a-3b\right)\left(a+3b\right)\)

11 tháng 4 2019

a, P = y- x/xy

Câu 1: Số dư khi chia \(43^2+43.17\) cho 60 là: Câu 2: Số thực x để biểu thức \(A=(5x-3)^2-\dfrac{3}{4}\) đạt giá trị nhỏ nhất là (Nhập kết quả dưới dạng số thập phân gọn nhất) Câu 3: Một hình chữ nhật có chiều dài gấp hai lần chiều rộng. Biết diện tích hình chữ nhật là 8cm2 thì chiều rộng hình chữ nhật là: Câu 4: Hai tam giác ABC và A’B’C’ là hai tam giác đồng dạng với tỉ...
Đọc tiếp

Câu 1: Số dư khi chia \(43^2+43.17\) cho 60 là:

Câu 2: Số thực x để biểu thức \(A=(5x-3)^2-\dfrac{3}{4}\) đạt giá trị nhỏ nhất là

(Nhập kết quả dưới dạng số thập phân gọn nhất)

Câu 3: Một hình chữ nhật có chiều dài gấp hai lần chiều rộng. Biết diện tích hình chữ nhật là 8cm2 thì chiều rộng hình chữ nhật là:

Câu 4: Hai tam giác ABC và A’B’C’ là hai tam giác đồng dạng với tỉ số đồng dạng là \(k=\dfrac{2}{5}\).Nếu chu vi của tam giác A’B’C’ là 40cm thì chu vi của tam giác ABC là:

Câu 5: Cho một hình vuông có diện tích bằng diện tích của hình chữ nhật có chu vi là 104cm và chiều dài bằng 2,25 lần chiều rộng. Độ dài cạnh hình vuông đó là:

Câu 6: Tổng tất cả các số nguyên dương n khác 2 sao cho n-2 là ước của n2+1 là

Câu 7: Biểu thức \(P=\dfrac{1}{x^2+x+1}\)​ đạt giá trị lớn nhất khi x=

(Nhập kết quả dưới dạng số thập phân gọn nhất)

Câu 8: Cho tam giác ABC cân tại A có chu vi là 80cm. Gọi I là giao điểm của các đường phân giác trong của tam giác, AI cắt BC tại D. Biết \(AI=\dfrac{3}{4}AD\). Độ dài cạnh BC là:

Câu 9: Cho \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0; (x,y,z\neq 0)\). Giá trị của biểu thức \(\dfrac{yz}{x^2} +\dfrac{xz}{y^2} +\dfrac{xy}{z^2}\)​ là:

Câu 10: Cho \(x^2+y^2=\dfrac{50}{7}xy\) với y>x>0. Giá trị của biểu thức \(P=\dfrac{x-y}{x+y}\) là:

(Nhập kết quả dưới dạng số thập phân gọn nhất)

1
4 tháng 6 2018

Ai giúp mk với mk đang cần gấp

Mk làm được hết

mà vẫn cứ sai hoài à

tìm mãi ko thấy lỗi sai

7 tháng 5 2019

a, Vì \(2+\frac{3-2x}{5}\)không nhỏ hơn \(\frac{x+3}{4}-x\)

\(\Rightarrow2+\frac{3-2x}{5}\ge\frac{x+3}{4}-x\)

Giải phương trình : 

\(2+\frac{3-2x}{5}\ge\frac{x+3}{4}-x\)

\(\Rightarrow\frac{40}{20}+\frac{4\left(3-2x\right)}{20}\ge\frac{5\left(x-3\right)}{20}-\frac{20x}{20}\)

\(\Rightarrow40+12-8x\ge5x-15-20x\)

\(\Rightarrow7x=67\)

\(\Rightarrow x\ge\frac{67}{7}\)

7 tháng 5 2019

b, \(\frac{2x+1}{6}-\frac{x-2}{9}>-3\)

\(\Rightarrow\frac{3\left(2x+1\right)}{18}-\frac{2\left(x-2\right)}{18}>\frac{-54}{18}\)

\(\Rightarrow6x+3-2x+4>-54\)

\(\Rightarrow4x>-61\)

\(\Rightarrow x>\frac{-61}{4}\)\(\left(1\right)\)

Và : \(x-\frac{x-3}{4}\ge3-\frac{x-3}{12}\)

\(\frac{12x}{12}-\frac{3\left(x-3\right)}{12}\ge\frac{36}{12}-\frac{x-3}{12}\)

\(\Rightarrow12x-3x+9\ge36-x+3\)

\(\Rightarrow10x\ge30\)

\(\Rightarrow x\ge3\)\(\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\hept{\begin{cases}x>\frac{-61}{4}\\x\ge3\end{cases}\Rightarrow x>3}\)

Vậy với giá trị x > 3 thì x là nghiệm chung của cả 2 bất phương trình

12 tháng 12 2018

\(x+y=\frac{1}{3}\Leftrightarrow\left(x+y\right)^3=\frac{1}{27}\)

\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=\frac{1}{27}\)

\(\Leftrightarrow x^3+y^3+xy.3.\frac{1}{3}=\frac{1}{27}\)

\(\Leftrightarrow x^3+y^3+xy=\frac{1}{27}\)

Do đó \(B=\frac{1}{27}\)

12 tháng 12 2018

Có: x3 + y3 = (x + y)3 - 3xy (x + y)

=> B = x3 + y3 + xy 

         = (x + y)3 - 3xy (x + y) + xy

         = (1/3)3 - 3xy . 1/3 + xy (do x + y =1/3)

         = 1/9 - xy + xy

         = 1/9

\(a,x^3-x^2-12x+45=0\)

\(\left(x-3\right)\left(x-3\right)\left(x+5\right)=0\)

\(x=3;3;-5\)

\(b,2x^3-5x^2+8x-5=0\)

\(\left(2x^2-3x+5\right)\left(x-1\right)=0\)

\(x=1\)

lm 1 câu đã chán ngắt , giải mấy câu nữa não tớ nổ bùmmm , tớ bt đây là trang web để hc nhưng tạo nên tiếng cười là chính nha ^^