K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2016

\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

\(\Leftrightarrow\left(a^2+b^2\right)cd=\left(c^2+d^2\right)ab\)

\(\Leftrightarrow a^2cd-c^2ab-d^2ab+b^2cd=0\)

\(\Leftrightarrow ac\left(ad-bc\right)-bd\left(ad-bc\right)=0\)

\(\Leftrightarrow\left(ac-bd\right)\left(ad-bc\right)=0\)

\(\Leftrightarrow\begin{cases}ac=bd\\ad=bc\end{cases}\)

\(\Leftrightarrow\begin{cases}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{cases}\)

 

28 tháng 10 2016

Ta có:

\(\frac{a^2+b^2}{c^2+d^2}=\frac{a.b}{c.d}=\frac{a^2+b^2+a.b}{c^2+d^2+c.d}=\frac{a^2+a.b+b^2+a.b}{c^2+c.d+d^2+c.d}\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{a.b}{c.d}=\frac{a\left(a+b\right)+b\left(a+b\right)}{c\left(c+d\right)+d\left(c+d\right)}=\frac{\left(a+b\right)\left(a+b\right)}{\left(c+d\right)\left(c+d\right)}\)

\(\frac{\left(a+b\right)\left(a+b\right)}{\left(c+d\right)\left(c+d\right)}=\frac{a.b}{c.d}\Rightarrow\frac{c\left(a+b\right)}{a\left(c+d\right)}=\frac{b\left(c+d\right)}{d\left(a+b\right)}\)

\(\Rightarrow\frac{ca+cb}{ca+ad}=\frac{bc+bd}{ad+bd}=\frac{ca+bd}{ca-bd}=1\)

\(\Rightarrow ca+cb=ca+ad\)

\(\Rightarrow cb=ad\)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)

28 tháng 10 2016

cảm ơn vui

12 tháng 11 2016

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}.\frac{c}{d}=\frac{a}{b}.\frac{a}{b}=\frac{a^2}{b^2};\frac{a}{b}.\frac{c}{d}=\frac{c}{d}.\frac{c}{d}=\frac{c^2}{d^2}\\ \Rightarrow\frac{a}{b}.\frac{c}{d}=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)

12 tháng 11 2016

Ngắn thế, chắc không đấy

11 tháng 10 2017

Ta có tỉ lệ thức 

\(\frac{a}{b}=\frac{c}{d}\)

Suy ra 

a=bk

c=dk

Nên ta có

\(\frac{a.b}{c.d}=\frac{bk.b}{dk.d}=\frac{b^2.k}{d^2.k}=\frac{b^2}{d^2}\)

\(\frac{a^2-b^2}{c^2-d^2}=\frac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\frac{b^2.k^2-b^2}{d^2.k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2} \)

Suy ra \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)

11 tháng 11 2017

Vì a/b=c/d =>a/c=b/d => a^2/c^2=a/c.b/d=a.b/c.d (1)

Ta có:

       a/c=b/d => a^2/c^2=b^2/d^2 = a^2-b^2/c^2-d^2 (2) ( Áp dụng tc dãy tỉ số bằng nhau)

   Từ (1) và (2) => a.b/c.d=a^2-b^2/c^2-d^2

26 tháng 6 2017

Ta có:

         \(\frac{a^2+b^2}{c^2+d^2}\)=\(\frac{a.b}{c.d}\)=\(\frac{a^2+b^2+a.b}{c^2+d^2+c.d}\)=\(\frac{a^2+a.b+b^2+a.b}{c^2+c.d+d^2+c.d}\)

          \(\frac{a^2+b^2}{c^2+d^2}\)=\(\frac{a.b}{c.d}\)=\(\frac{a\left(a+b\right)+b\left(a+b\right)}{c\left(c+d\right)+d\left(c+d\right)}\)\(\frac{\left(a+b\right)\left(a+b\right)}{\left(c+d\right)\left(c+d\right)}\)

           \(\frac{\left(a+b\right)\left(a+b\right)}{\left(c+d\right)\left(c+d\right)}\)=\(\frac{a.b}{c.d}\)=) \(\frac{c\left(a+b\right)}{a\left(c+d\right)}\)=\(\frac{b\left(c+d\right)}{d\left(a+b\right)}\)

                                                             =) \(\frac{ca+cb}{ca+ad}\)=\(\frac{bc+bd}{ad+bd}\)=\(\frac{ca-bd}{ad-bd}\)=1

                                                             =) ca + cb = ca + ad

                                                             =) cb = ad

                                                             =) \(\frac{a}{b}\)\(\frac{c}{d}\)

          

5 tháng 1 2018

\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)

\(\Rightarrow\frac{a}{c}.\frac{b}{d}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

\(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)và \(\frac{a^2+b^2}{c^2+d^2}=\left(\frac{a+b}{c+d}\right)^2\)

1 tháng 8 2018

Đặt a/b=c/d=k

suy ra a=bk

b=dk

Từ đó ta có: a.b/c.d=bk.b/dk.d=b^2/d^2

a^2-b^2/c^2-d^2= (bk)^2-b^2/(dk)^2-d^2=b^2(k^-1)/d^2(k^2-1)=b^2/d^2

vậy a.b/c.d=a^2-b^2/c^2-d^2(=b^2.d^2)

28 tháng 9 2016

a) Do \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a.b}{c.d}\left(1\right)\) 

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\left(2\right)\)

Từ (1) và (2) => \(\frac{a.b}{c.d}=\frac{a^2-b^2}{c^2-d^2}\left(đpcm\right)\)

b) Do \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\begin{cases}\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\\\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\end{cases}\)\(\Rightarrow\begin{cases}\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\\\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\end{cases}\)

\(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\left(đpcm\right)\)

23 tháng 12 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\) (*)

a) Từ (*) ta có:

\(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\) (1)

\(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\) (2)

Từ (1) và (2) suy ra \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)

b) Từ (*) ta có:

\(\dfrac{a}{b}=\dfrac{bk}{b}=k\) (3)

\(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=\dfrac{k\left(b+d\right)}{b+d}=k\) (4)

Từ (3) và (4) suy ra \(\dfrac{a}{b}=\dfrac{a+c}{b+d}\)

c) Từ (*) ta có:

\(\dfrac{a}{3a+b}=\dfrac{bk}{3bk+b}=\dfrac{bk}{b\left(3k+1\right)}=\dfrac{k}{3k+1}\) (5)

\(\dfrac{c}{3c+d}=\dfrac{dk}{3dk+d}=\dfrac{dk}{d\left(3k+1\right)}=\dfrac{k}{3k+1}\) (6)

Từ (5) và (6) suy ra \(\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\)

d) Từ (*) ta có:

\(\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k^2\) (7)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2.k^2+d^2.k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\) (8)

Từ (7) và (8) suy ra \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)

e) Từ (*) ta có:

\(\dfrac{ab}{cd}=\dfrac{bk.b}{dk.d}=\dfrac{b^2}{d^2}=\dfrac{b}{d}\) (9)

\(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{b^2.k^2-b^2}{d^2.k^2-d^2}=\dfrac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\dfrac{b}{d}\) (10)

Từ (9) và (10) suy ra \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\)

f) Từ (*) ta có:

\(\dfrac{ab}{cd}=\dfrac{bk.b}{dk.d}=\dfrac{b^2}{d^2}=\dfrac{b}{d}\) (11)

\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\dfrac{\left[b\left(k-1\right)\right]^2}{\left[d\left(k-1\right)\right]^2}=\dfrac{b}{d}\) (12)

Từ (11) và (12) suy ra \(\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)