Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hướng giải:
a) Hình chữ nhật : dấu hiệu tứ giác có 3 góc vuông là hình chữ nhật
b) C/m IN là đg tb của tam giác ABC => NA = NC
Tứ giác ADCI là hình thoi: dấu hiệu hai đg chéo vuông góc với nhau và cắt nhau tại trung điểm mỗi đường
c) BC cắt DC tại C chứ. (hai đoạn này chỉ có 1 điểm chung)
*CHÚ Ý: phía trên ko phải là bài giải. Chỉ lả gợi ý giải.
a)
DEA = EAF = AFD = 900
=> AEDF là hình chữ nhật
b)
D là trung điểm của BC
mà DE // AC (DE _I_ AB; AC _I_ AB)
=> E là trung điểm của AB
mà E là trung điểm của MD (M đối xứng D qua AB)
=> ADBM là hình bình hành
mà AB _I_ MD (M đối xứng D qua AB)
=> ADBM là hình thoi
c)
D là trung điểm của BC
mà DF // AB (DF _I_ AC; AB _I_ AC)
=> F là trung điểm của AC
mà F là trung điểm của ND (N đối xứng D qua AC)
=> ADCN là hình bình hành
mà AC _I_ ND (N đối xứng D qua AC)
=> ADCN là hình thoi
=> AN // BC
mà AM // BC (ADBM là hình thoi)
=> M, A, N thẳng hàng
AN = CD (ADCN là hình thoi)
AM = BD (ADBM là hình thoi)
=> CD = BD (D là trung điểm của BC)
=> AM = AN
=> M đối xứng N qua A
d)
AEDF là hình vuông
<=> AD là tia phân giác của BAC
mà AD là đường trung tuyến của tam giác ABC vuông tại A (D là trung điểm của BC)
=> Tam giác ABC vuông cân tại A
a: H đối xứng A qua MN
nên HA vuông góc với MN tại trung điểm của HA
=>MN là phân giác của góc AMH(1)
H đối xứng B qua MP
nên HB vuông góc với MP tại D và D là trung điểm của HB
=>MP là phân giác của góc HMB(2)
Xét tứ giác MCHD có
góc MCH=góc MDH=góc DMC=90 độ
nên MCHD là hình chữ nhật
b: Từ (1), (2) suy ra góc BMA=2*90=180 độ
=>B,M,A thẳng hàng
a, Xté tứ giác AMIN có :
BMI=MAN=INA=900
=> Tứ giác AMIN là hình chữ nhật
b, Xét ΔABC
có : BI=IC ( gt)
IN // AM ( gt )
=> AN=NC
mà IN=ND
=> Tứ giác ADCI là hình bình hành (1)
mà INC = 900 (2) Từ (1) và (2) => ADCI là hình thoi
c, Kẻ IQ // BK (QϵCD)
ΔBKC có :
BI = IC (gt)
IQ // BK (cách dựng )
cm tương tự : DK=KQ
=> DK=KQ=QC
=> DK/DC = 1/3
a: Ta có: Q và A đối xứng với nhau qua MN
nên MN là đường trung trực của QA
=>MN vuông góc với QA tại trung điểm của QA
Ta có: Q và B đối xứng với nhau qua MP
nên MP là đường trung trực của QB
=>MP vuông góc với QB tại trung điểm của QB
Xét tứ giác MRQS có
\(\widehat{MRQ}=\widehat{MSQ}=\widehat{SMR}=90^0\)
Do đó: MRQS là hình chữ nhật
b: Xét ΔMNP có
Q là trung điểm của NP
QS//MN
Do đó: S là trung điểm của MP
Xét tứ giác MQPB có
S là trung điểm của MP
S là trung điểm của QB
Do đó: MQPB là hình bình hành
mà QM=QP
nên MQPB là hình thoi