K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2017

a) Ta có AD = 1 2 B C = 8 2 = 4 c m  

Xét  DADC có GF là đường trung bình

⇒   G F = 1 2 A D = 4 2 = 2 c m  

b) Chứng minh ADCE là hình thoi. Để ADCE là hình vuông thì điều kiện cần và đủ là E C D ^ = 90 0 ⇔ C 1 ^ = C 2 ^ = 45 0  

Û DABC vuông tại A.

12 tháng 9 2019

a) Ta chứng minh ABEC là hình bình hành mà có Â = 900 Þ tứ giác ABEC là hình chữ nhật.

b) Áp dụng định lý về đường trung bình của tam giác △ A D C ⇒ F G = 1 2 A D = 2 c m  

c) Để tứ giác ABEC là hình vuông thì AB = AC ÞDABC phải là tam giác vuông cân tại A.

23 tháng 12 2016

a)

DEA = EAF = AFD = 900

=> AEDF là hình chữ nhật

b)

D là trung điểm của BC

mà DE // AC (DE _I_ AB; AC _I_ AB)

=> E là trung điểm của AB

mà E là trung điểm của MD (M đối xứng D qua AB)

=> ADBM là hình bình hành

mà AB _I_ MD (M đối xứng D qua AB)

=> ADBM là hình thoi

c)

D là trung điểm của BC

mà DF // AB (DF _I_ AC; AB _I_ AC)

=> F là trung điểm của AC

mà F là trung điểm của ND (N đối xứng D qua AC)

=> ADCN là hình bình hành

mà AC _I_ ND (N đối xứng D qua AC)

=> ADCN là hình thoi

=> AN // BC

mà AM // BC (ADBM là hình thoi)

=> M, A, N thẳng hàng

AN = CD (ADCN là hình thoi)

AM = BD (ADBM là hình thoi)

=> CD = BD (D là trung điểm của BC)

=> AM = AN

=> M đối xứng N qua A

d)

AEDF là hình vuông

<=> AD là tia phân giác của BAC

mà AD là đường trung tuyến của tam giác ABC vuông tại A (D là trung điểm của BC)

=> Tam giác ABC vuông cân tại A

21 tháng 12 2016

Hình học lớp 8

a) Tứ giác AEDF có: góc BAC=90\(^o\)

góc DFA=90\(^o\)

góc DEF=90\(^o\)

=> Tứ giác AEDF là hình chữ nhật

b) Ta có: AD=BD( AD là đường trung tuyến ứng với cạnh huyền)

=> Δ ABD cân tại D

mà DE là đường cao( do AB là đường trung trực của DM)

=> DE là đường trung tuyến

=> EA=1/2AB=> EA=3 (cm)

CM tương tự đối với Δ ADC

từ đó suy ra: FA=1/2AC=> FA=4 (cm)

\(S_{AEDF}=EA\cdot FA=3\cdot4=12\left(cm^2\right)\)

c) Tứ giác ADBM có: E là trung điểm của đường chéo AB(cmt)

E là trung điểm của đường chéo DM

=> ADBM là hình bình hành

mà MD vuông góc với AB

=> ADBM là hình thoi

d) Tương tự như tứ giác ADBM thì ADCN cũng là hình thoi

Ta có: MA=AD( 2 cạnh của hình thoi)

NA = AD( 2 cạnh của hình thoi)

=> MA=NA

mà MA=BD

=> NA=BD

Ta có: NA//DC( cạnh đối của hình thoi)

=> NA//BD( vì BD và DC trùng nhau)

tứ giác BAND có: NA=BD

NA//BD

=> BADN là hình bình hành

=> AB=DN

Để ADCN là hình vương

<=> DN=AC

<=> AB=AC( AB=DN)

<=> Δ ABC cân tại A

mà Δ ABC vuông

=> ΔABC vuông cân tại A
Vậy để ADNC là hình vuông thì tam giác ABC phải vuông cân tại A

 

 

 

 

HÌ HÌ KO BIẾT CÓ ĐÚNG KO NƯA, BN XEM LẠI THỬ MK CÓ NHẦM CHỖ NÀO THÌ CỨ HỎI TỰ NHIÊN NHÉ

 

 

 

21 tháng 12 2016

mk ra bài này rồi đợi mk tý nhé

17 tháng 12 2017

Hình bạn tự vẽ nhé!

c) Bạn có: EFGD là hình bình hành

=> FG // ED

      FG = ED

Mà FG = FA ; ED = EK

=> AG // DK

     AG = DK

=> AGDK là hình bình hành

Lại có O là trung điểm AD

=> O là trung điểm GK

=> G đối xứng K qua O

d) Mình làm tắt:

   Để AIGD là hình vuông thì

   \(\hept{\begin{cases}AD\perp GD\\AD=GD\end{cases}}\)

\(\Rightarrow\Delta ABC\)vuông cân

4 tháng 12 2016
Bài 1
a) Xét tam giác BCD có BM=MD(gt), BN=NC(gt) => MN là đg` TB => MN// DC => MN// DE(1)
và MN=1/2DC => MN= DE(2)
từ (1)và (2) => MNED là hbh

b) MNED là hbh(câu a) => MD//NE => ADM= DEN(đồng vị)
Xét tam giác ABD vg tại A có BM=DM=> AM là trung tuyến => AM=1/2BD= MD
=> tam giác ADM cân tại M => MDA = DAM
=> DEN= MAD (3)
MN//DE=> MN//AE => AMNE là hình thang (4)
từ (3)và (4) => AMNE là hình thang cân

c) để MNED là hình thoi \Leftrightarrow MNED là hbh có MD=DE \Leftrightarrow 1/2BD=1/2CD \Leftrightarrow BD = CD \Leftrightarrow tam giác BCD cân tại D \Leftrightarrow DBC=góc C \Leftrightarrow góc C=1/2góc B\Leftrightarrow góc C=2góc B
Vậy để MNED là hình thoi thì tam giác ABC có góc C=2góc B
 
 
1 tháng 12 2016
  1. Bài 1
    a) Xét tam giác BCD có BM=MD(gt), BN=NC(gt) => MN là đg` TB => MN// DC => MN// DE(1)
    và MN=1/2DC => MN= DE(2)
    từ (1)và (2) => MNED là hbh

    b) MNED là hbh(câu a) => MD//NE => ADM= DEN(đồng vị)
    Xét tam giác ABD vg tại A có BM=DM=> AM là trung tuyến => AM=1/2BD= MD
    => tam giác ADM cân tại M => MDA = DAM
    => DEN= MAD (3)
    MN//DE=> MN//AE => AMNE là hình thang (4)
    từ (3)và (4) => AMNE là hình thang cân

    c) để MNED là hình thoi \Leftrightarrow MNED là hbh có MD=DE \Leftrightarrow 1/2BD=1/2CD \Leftrightarrow BD = CD \Leftrightarrow tam giác BCD cân tại D \Leftrightarrow DBC=góc C \Leftrightarrow góc C=1/2góc B\Leftrightarrow góc C=2góc B
    Vậy để MNED là hình thoi thì tam giác ABC có góc C=2góc B
     
    nhuquynhdat, 17 Tháng mười hai 2013
    #2
     
  2. nhuquynhdat

    nhuquynhdatGuest

     

    bài 2

    a) AB//CD => AB//CE(1)
    Xét tam giác ADE có AH là đg` cao
    lại có E đối xứng với D qua H => H là trung điểm của DE => AH là trung tuyến
    => tam giác ADE cân tại A
    => ADE=AED(goác đáy tam giác cân)
    mặt khác ABCD là hình thang cân => ADC=góc C
    => góc C= AED
    mà 2 góc này ở vị trí đồng vị của AE và BC => AE//BC(2)
    từ (1)và (2) => ABCE là hbh

    b) xét tam giác AHE và tam giác FHD có góc AHE=góc DHF(đối đỉnh)
    DH=HE(gt)
    AE//DF(gt)=> AEH=FDH(SLT)
    =>tam giác AHE=tam giác FHD(gcg) => AH=HF => H là TĐ của AF

    c) Ta có AH=HF(câu b)DH=HE(gt) => ADFE là hbh
    mà AH vg góc với ED=> AF vg góc với ED => ADEF là hình thoi
    lại có tam giác ADE cân tại A (câu a)=> AD=AE => ADEF là hình vg