K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2019

27 tháng 9 2016

a, theo đề ta có : \(\frac{AC}{AB}\) = \(\frac{5}{12}\)

                          => AC= 6.5:12=2,5

b, ta có: BC= \(\sqrt{AC^2+AB^2}\) = \(\frac{13}{2}\)

25 tháng 7 2023

Ta có: \(cot\alpha=\dfrac{5}{12}\)

\(\Rightarrow\dfrac{AC}{AB}=\dfrac{5}{12}\Leftrightarrow\dfrac{AC}{30}=\dfrac{5}{12}\)

\(\Rightarrow AC=\dfrac{5\cdot30}{12}=12,5\left(cm\right)\)

Ta có \(\Delta ABC\) vuông tại A áp dụng định lý Py-ta-go ta có:

\(BC=\sqrt{AC^2+AB^2}=\sqrt{30^2+12,5^2}=32,4\left(cm\right)\)

25 tháng 7 2023

Góc B là bao nhiêu bạn?

7 tháng 7 2017

a) 2,5 cm

b)6,5 cm

9 tháng 10 2021

\(a,\tan\widehat{B}=\dfrac{AC}{AB}=\dfrac{5}{12}\Leftrightarrow AC=\dfrac{5}{12}\cdot6=2,5\left(cm\right)\\ b,BC=\sqrt{AC^2+AB^2}=\sqrt{2,5^2+6^2}=6,5\left(cm\right)\left(pytago\right)\)

9 tháng 10 2021

a) Xét tam giác ABC vuông tại A:

\(AC=tan\alpha.AB=\dfrac{5}{12}.6=2,5\left(cm\right)\)

b) Áp dụng đ/lý Pytago trong tam giác ABC vuông tại A:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{2,5^2+6^2}=6,5\left(cm\right)\)

6 tháng 9 2020

Áp dụng định lí Ceva cho tam giác ABC có 3 cát tuyến AH,BM,CD đồng quy: \(\frac{MA}{MC}.\frac{HC}{HB}.\frac{DB}{DA}=1\Rightarrow\frac{HC}{HB}=\frac{AD}{BD}\)

                                                                          (Vì M trung điểm AC nên \(\frac{MA}{MC}=1\))

(Định lí Ceva này bạn có thể lên google search để nắm rõ, Định lí này chỉ học sinh trong đội tuyển mới học thoi)

Vì CD là phân giác \(\widehat{BCA}\)nên \(\frac{CA}{CB}=\frac{DA}{DB}\Rightarrow\frac{AC}{BC}=\frac{HC}{HB}=\frac{BC-HB}{HB}=\frac{BC}{HB}-1\)

\(\Rightarrow AC=\frac{BC^2}{HB}-BC=\frac{AB^2+AC^2}{HB}-BC=\frac{HB.BC+AC^2}{HB}-BC=\frac{AC^2}{HB}\Rightarrow AC=HB\)

( Chỗ này áp dụng định lí Pythagoras: BC2 = AB2+AC2 và Hệ thức lượng tam giác vuông AB2=HB.BC)

Có \(\hept{\begin{cases}AB^2=HB.BC\\BC^2=AB^2+AC^2\end{cases}\Rightarrow\hept{\begin{cases}AB^2=aAC\\AB^2=a^2-AC^2\end{cases}}\Rightarrow\hept{\begin{cases}AB=\sqrt{aAC}\\AC^2+aAC-a=0\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}AC=\frac{-a+\sqrt{a^2+4a}}{2}=\frac{2a}{a+\sqrt{a^2+4a}}\\AB=\sqrt{aAC}=\sqrt{\frac{2a^2}{a+\sqrt{a^2+4a}}}\end{cases}}\)

5 tháng 11 2020

chua hoc

Xét tam giác ABC vuông tại A có \(tan\alpha=\frac{3}{4}=\frac{AC}{AB}=\frac{AC}{8}\Leftrightarrow AC=\frac{3.8}{4}=\frac{24}{4}=6\left(cm\right)\)

Áp dụng ĐL Pytago vào tam giác ABC vuông tại A ta có : 

\(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=\sqrt{36+64}=\sqrt{100}=10\left(cm\right)\)

Vậy \(AC=6cm;BC=10cm\)

23 tháng 8 2021

Vì tam giác ABC vuông tại A :

-> tan a = \(\frac{AC}{AB}\) Hay tan a = \(\frac{AC}{8}\)

Lại có tan a = \(\frac{3}{4}\) -. AC=  \(\frac{8.3}{4}\)= 6 

Xét tam giác ABC vuông tại A có :\(AC^2\)\(AB^2\)\(BC^2\)

Tính ra BC = 10 

CHÚNG BẠN HỌC TỐT :)))

6 tháng 8 2016

Vì tam giác ABC vuông tại A nên:

\(AB^2+AC^2=BC^2\)

=> \(\left(\frac{2}{3}AC\right)^2+AC^2=12^2\)

=>\(\frac{4}{9}AC^2+AC^2=144\)

=>\(AC^2\left(\frac{4}{9}+1\right)=144\)

=>\(AC^2.\frac{13}{9}=144\)

=>\(AC^2=144:\frac{13}{9}=\frac{1296}{13}\)

=> \(AC=\frac{36\sqrt{13}}{13}\)

=> \(AB=AC.\frac{2}{3}=\frac{36\sqrt{13}}{13}.\frac{2}{3}=\frac{24\sqrt{13}}{13}\)

Vậy 2 cạnh góc vuông của tam giác ABC là \(\frac{24\sqrt{13}}{13}\)\(\frac{36\sqrt{13}}{13}\)