K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

a: XétΔABE và ΔACD có

AB=AC

\(\widehat{BAE}\) chung

AE=AD

Do đó: ΔABE=ΔACD

Suy ra: BE=CD

b: Xét ΔDBC và ΔECB có 

DB=EC

BC chung

DC=EB

Do đó: ΔDBC=ΔECB

Suy ra: \(\widehat{KDB}=\widehat{KEC}\)

Xét ΔKDB và ΔKEC có 

\(\widehat{KDB}=\widehat{KEC}\)

BD=CE

\(\widehat{KBD}=\widehat{KCE}\)

Do đó: ΔKDB=ΔKEC

26 tháng 3 2022

a, Xét tam giác ADB và tam giác ADC có 

AD _ chung ; ^DAB = ^DAC ; AB = AC

Vậy tam giác ADB = tam giác ADC (c.g.c) 

b, Xét tam giác ABC cân tại A có AD là phân giác 

đồng thời là đường cao hay AD vuông BC 

c, Xét tam giác AMD và tam giác AND có 

AD _ chung ; ^MAD = ^NAD 

Vậy tam giác AMD = tam giác AND ( ch-gn ) 

=> AM = AN ( 2 cạnh tương ứng ) 

d, Ta có AM/AB = AN/AC => MN // BC ( Ta lét đảo ) 

25 tháng 10 2016

Bạn tự vẽ hình nhéleuleu

a) góc B + C + A =180*

suy ra : 70* + 50* +A =180*

suy ra : góc A = 180 -70 -50 = 60*

vì AD là tia p/giác suy ra: BAD = DAC = 60* /2= 30*

BAD + B + ADB = 180*

suy ra: 30+ 70+ADB =180

suy ra : ADB = 180 -(30+70)=80*

Do AH vuông BC suy ra AHD=90*

BDA + ADH =180*(2góc kề bù)

suy ra :80* +ADH =180*

suy ra : ADH = 100*

ADH +AHD + HAD = 180*

suy ra : 100 + 90 + HAD =180

suy ra : HAD =? SAI ĐỀ RÙI HAY SAO Ýohoucchegianroi

 

18 tháng 12 2016

a)Xét ΔAMD và ΔCMB có :

góc AMB = góc CMD ( đối đỉnh)

AM = NC ( GT)

BM = MD ( GT)

--->ΔAMD = ΔCMB(c.g.c)

b) ta có góc CAD = góc ACB(ΔAMD = ΔCMB)

tạo ra hai góc so le trong bằng nhau

--->AD//BC

c)Xét ΔABC và ΔCDA có :

AC : cạnh chung

AD = BC (ΔAMD = ΔCMB)

góc CAD = góc ACB(ΔAMD = ΔCMB)

--->ΔABC = ΔCDA(c.g.c)

d)ta có AE + ED = AD

AF+ FC = BC

mà EF= BF; AD = BC

--->AE = FC

xét ΔAFC và ΔACE có :

AE = FC (CMT)

AC : cạnh chung

góc CAE = góc ACF (ΔAMD = ΔCMB)

--->ΔAFC = ΔCEA ( c.g.c)

--->góc AEC = góc AFC ( hai góc tương ứng)

--->góc AEC = góc AFC=90'

--->AF vuông góc với BC

Hỏi đáp Toán

18 tháng 12 2016

a) Xét t/g AMD và t/g CMB có:

AM = CM (gt)

AMD = CMB ( đối đỉnh)

MD = MB (gt)

Do đó, t/g AMD = t/g CMB (c.g.c) (đpcm)

b) t/g AMD = t/g CMB (câu a)

=> ADM = CBM (2 góc tương ứng)

Mà ADM và CBM là 2 góc so le trong nên AD // BC (đpcm)

c) t/g AMD = t/g CMB (câu a)

=> AD = BC (2 cạnh tương ứng)

Xét t/g ABC và t/g CDA có:

BC = AD (gt)

ACB = CAD (so le trong)

AC là cạnh chung

Do đó, t/g ABC = t/g CDA (c.g.c) (đpcm)

d) Có: AD = BC (câu c)

DE = BF (gt)

Suy ra AD - DE = BC - BF

=> AE = CF

Mà AE // CF do AD // BC (câu b)

Nên CE // AF ( vì theo tính chất đoạn chắn AE = CF khi AE // CF và CE // AF)

Lại có: CE _|_ AD (gt) => AF _|_ AD

Mà BC // AD (câu b) => AF _|_ BC (đpcm)

 

Bài 2: 

\(\widehat{ADB}=180^0-80^0=100^0\)

Ta có: \(\widehat{ADB}+\widehat{BAD}+\widehat{B}=\widehat{ADC}+\widehat{CAD}+\widehat{C}\)

\(\Leftrightarrow\widehat{B}+100^0=\widehat{C}+80^0\)

\(\Leftrightarrow1.5\widehat{C}-\widehat{C}=-20^0\)

\(\Leftrightarrow\widehat{C}=40^0\)

hay \(\widehat{B}=60^0\)

=>\(\widehat{BAC}=80^0\)