Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+4b^2=23ab\Rightarrow a^2+4ab+4b^2=27ab\Rightarrow\left(a+2b\right)^2=27ab\)
\(\Rightarrow\dfrac{\left(a+2b\right)^2}{9}=3ab\)\(\Rightarrow\left(\dfrac{a+2b}{3}\right)^2=3ab\)
Lấy logarit cơ số c hai vế:
\(log_c\left(\dfrac{a+2b}{3}\right)^2=log_c\left(3ab\right)\)
\(\Rightarrow2log_c\dfrac{a+2b}{3}=log_c3+log_ca+log_cb\)
\(\Rightarrow log_c\dfrac{a+2b}{3}=\dfrac{1}{2}\left(log_ca+log_cb+log_c3\right)\)
Lời giải:
Ta có \(\left\{\begin{matrix} \log_ab=\frac{b}{4}\\ \log_2a=\frac{16}{b}\end{matrix}\right.\Rightarrow 4=\log_2a.\log_ab=\log_2b\)
\(\Rightarrow b=16\).
\(\log_2a=\frac{16}{b}=1\Rightarrow a=2\)
Do đó \(a+b=18\). Đáp án D.
Lời giải:
Đặt \(\log_yx=a,\log_xy=b\). Khi đó ta có:
\(\left\{\begin{matrix} a+b=\frac{10}{3}\\ ab=\log_xy.\log_yx=1\end{matrix}\right.\)
Áp dụng định lý Viete đảo thì \(a,b\) là nghiệm của PT:
\(x^2-\frac{10}{3}x+1=0\) . PT trên có hai nghiệm \(3,\frac{1}{3}\)
Giả sử \(a=\log_yx=3\) và \(b=\log_xy=\frac{1}{3}\)
\(\left\{\begin{matrix} \log_y\left(\frac{144}{y}\right)=3\\ \log_x\left(\frac{144}{x}\right)=\frac{1}{3} \end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=24\sqrt{3}\\ y=2\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow \frac{x+y}{2}=13\sqrt{3}\). Đáp án D
Đk: x > -1/3
<=> 3x+1 < x+7
<=> x < 3
kết hợp đk --> -1/3 < x < 3
--> nghiệm nguyên của x = { 0; 1 ; 2 }
ĐK;x>0
<=> \(\frac{1}{2}\)log2x-log2x-log52>1
<=>\(\frac{1}{2}\)log2x>1+log52
<=> log2x>\(\frac{1+log_{ }^{ }}{2}\)( ví a=2>0)
<=>x>2\(\frac{1+log_{ }^{ }}{2}\)
Lời giải:
Đặt \(\log_9a=\log_{12}b=\log_{16}(a+b)=t\)
\(\left\{\begin{matrix} a=9^t\\ b=12^t\\ a+b=16^t\end{matrix}\right.\Rightarrow 9^t+12^t=16^t\)
Chia 2 vế cho \(12^t\) ta có:
\(\left(\frac{9}{12}\right)^t+1=\left(\frac{16}{12}\right)^t\)
\(\Leftrightarrow \left(\frac{3}{4}\right)^t+1=\left(\frac{4}{3}\right)^t\) (1)
Đặt \(\frac{a}{b}=\left(\frac{9}{12}\right)^t=\left(\frac{3}{4}\right)^t=k\). Thay vào (1):
\(k+1=\frac{1}{k}\Leftrightarrow k^2+k-1=0\)
\(\Leftrightarrow \frac{a}{b}=k=\frac{-1+ \sqrt{5}}{2}\) (do \(k>0\) nên loại TH \(k=\frac{-1-\sqrt{5}}{2}\) )
Thấy \(\frac{-1+\sqrt{5}}{2}\in (0;\frac{2}{3})\) nên chọn đáp án b
Đáp án B
Ta có: