Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*x2+bx+c=0
\(\Delta=b^2-4c=b^2-4.\left(2b-4\right)=b^2-8b+16=\left(b-4\right)^2\)=>\(\sqrt{\Delta}=\left|b-4\right|\)
Với (b-4)2=0 =>b=4 =>c=4
PT có 1 nghiệm kép: \(x_1=x_2=-2\)
Với\(\Delta=\) (b-4)2>0,PT có 2 nghiệm pb: \(x_1=\frac{-b+\left|b-4\right|}{2};x_2=\frac{-b-\left|b-4\right|}{2}\)
Với b>4 thì: \(x_1=-2;x_2=\frac{-2b+4}{2}=-b+2\)
Với b<0 thì: x1=-b+2 ; x2=-2
Vậy khi c=2b-4 và b tùy ý thì PT: x2+bx+c=0 luôn có 1 nghiệm nguyên là -2
Đặt − x 2 + x = t ;
f x = − x 2 + x ; f ' x = − 2 x + 1
Chọn A
Đáp án C
Phương trình
⇔ m x 2 + 2 x 3 − 2 x 2 + 2 x + 2 = 0 → t = x 2 + 2 x m t 3 − 2 t + 2 = 0 1
Ta có f x = x 2 + 2 x , x ≤ − 3 ⇒ f x ≥ 3 ⇒ t ∈ 3 ; + ∞
Khi đó 1 ⇔ m = 2 t 2 − 2 t 3 = f t với t ∈ 3 ; + ∞
Có f ' t = − 4 t 3 + 6 t 4 ⇒ f t nghịch biến trên 3 ; + ∞ ⇒ max 3 ; + ∞ f x ≤ f 3 = 4 27
Suy ra m ≤ max 3 ; + ∞ f x = 4 27 ⇒ có vô số nghiệm giá trị của m