K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Δ=(2m-2)^2-4(m^2-3m-4)

=4m^2-8m+4-4m^2+12m+16

=4m+20

Để phương trình có hai nghiệm phân biệt thì 4m+20>0

=>m>-20

b: A=(x1+x2)^2-3x1x2

=(2m-2)^2-3(m^2-3m-4)

=4m^2-8m+4-3m^2+9m+12

=m^2+m+16

Để A=18 thì m^2+m+16=18

=>m^2+m-2=0

=>(m+2)(m-1)=0

=>m=1 hoặc m=-2

16 tháng 4 2017
1, (delta)' = (-m)^2 - (m^2 - 4) = m^2 - m^2 + 4 = 4 => Ptr (1) luôn có nghiệm với mọi m 2, Với mọi m ptr (1) có 2 nghiệm x1,x2 Theo hộ thức Vi-ét ta có x1 + x2 = - b/a = -(-2m)/1 = 2m x1*x2 = c/a =(m^2 - 4)/1= m^2 - 4 Theo bài ra ta có x1^2 + x2^2 = 26 <=> (x1+x2)^2 - 2*x1*x2 = 26 <=> (2m)^2 - 2*(m^2 - 4) = 26 <=> 4m^2 - 2m^2 - 8 = 26 <=> 2m^2 - 8 - 26 = 0 <=> 2(m^2 - 17) = 0 <=> m^2 - 17 = 0 <=> (m - căn17)(m + căn17) = 0 <=> m = căn17 hoặc m = -(căn17) (Sr ko nhìu tg nên mk ko sd kí hiệu)
NV
18 tháng 4 2019

a/ Bạn tự giải

b/ \(\Delta'=\left(m+1\right)^2-\left(m^2+3m+2\right)=-m-1\)

Pt có 2 nghiệm pb khi \(\Delta'>0\Rightarrow m< -1\)

Pt có nghiệm kép khi \(\Delta'=0\Rightarrow m=-1\)

Pt vô nghiệm khi \(\Delta'< 0\Rightarrow m>-1\)

c/ Khi \(m< -1\) theo Viet pt có 2 nghiệm pb thỏa: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=m^2+3m+2\end{matrix}\right.\)

\(x_1^2+x_2^2=12\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=12\)

\(\Leftrightarrow\left(2m+2\right)^2-2\left(m^2+3m+2\right)-12=0\)

\(\Leftrightarrow m^2+m-6=0\Rightarrow\left[{}\begin{matrix}m=2>-1\left(l\right)\\m=-3\end{matrix}\right.\)

2 tháng 3 2018

Sử dụng định lí Vi-ét:

\(\frac{2}{x_1}+\frac{2}{x_2}=3\Leftrightarrow\frac{2\left(x_1+x_2\right)}{x_1.x_2}=3\)(*)

Tính ∆' tìm điều kiện của m để phương trình có 2 nghiệm phân biệt.

Sau đó bạn viết định lí Vi-ét và áp dụng và (*) 

Kết hợp cả hai điều kiện lại là ra kết quả đúng.

4 tháng 3 2018

Cảm ơn ạ

20 tháng 3 2021

a, \(x^2-2\left(m+1\right)x+m^2+m+1=0\)

Ta có : \(\left(-2m-2\right)^2-4\left(m^2+m+1\right)=4m^2+8m+4-4m^2-4m-4\)

\(=4m\)Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)hay \(4m>0\Leftrightarrow m>0\)

b, Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m+2\\x_1x_2=\frac{c}{a}=m^2+m+1\end{cases}}\)

\(x_1^2+x_2^2=3x_1x_2-1\)

mà \(x_1+x_2=2m+2\Leftrightarrow\left(x_1+x_2\right)^2=\left(2m+2\right)^2\)

\(\Leftrightarrow x_1^2+x_2^2=4m^2+8m+4-2x_1x_2\)

\(=4m^2+8m+4-\left(m^2+m+1\right)=3m^2+7m+3\)

hay \(3m^2+7m+3=3\left(m^2+m+1\right)-1\)

\(\Leftrightarrow3m^2+7m+3=3m^2+3m+2\Leftrightarrow4m+1=0\Leftrightarrow m=-\frac{1}{4}\)

6 tháng 4 2017

\(x^2-2mx+m^2-m+4=0\)

a/ ( a = 1; b = -2m; c = m^2 - m + 4 )

\(\Delta=b^2-4ac\)

   \(=\left(-2m\right)^2-4.1.\left(m^2-m+4\right)\)

   \(=4m^2-4m^2+4m-16\)   

    \(=4m-16\)

Để pt luôn có nghiệm \(\Leftrightarrow\Delta\ge0\Leftrightarrow4m-16\ge0\Leftrightarrow m\ge4\)

b/ Theo Vi-et ta có: \(\hept{\begin{cases}S=x_1+x_2=-\frac{b}{a}=2m\\P=x_1x_2=\frac{c}{a}=m^2-m+4\end{cases}}\)

Ta có: \(A=x_1^2+x_2^2-x_1x_2\)

             \(=S^2-2P-P\)

             \(=S^2-3P\)

             \(=\left(2m\right)^2-3\left(m^2-m+4\right)\)

             \(=4m^2-3m^2+3m-12\)

              \(=m^2+3m-12\)

               \(=m^2+3m+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2-12\)

                \(=\left(m+\frac{3}{2}\right)^2-\frac{57}{4}\ge-\frac{57}{4}\)

Vậy: \(MinA=-\frac{57}{4}\Leftrightarrow\left(m+\frac{3}{2}\right)^2=0\Leftrightarrow m=-\frac{3}{2}\)

6 tháng 4 2017

a)) Δ=b2-4ac
Δ=(-2m)2-4(m2-m+4)
Δ=4m-16
 để pt có ng khi Δ > 0 & Δ=0
 => m> hoặc = 4
 

AH
Akai Haruma
Giáo viên
30 tháng 10 2024

Lời giải:

a. Nếu $m=1$ thì PT trở thành:

$4x+1=0$

$\Leftrightarrow x=\frac{-1}{4}$

Nếu $m\neq 1$ thì PT trên là PT bậc 2 ẩn $x$.

PT có nghiệm khi mà: $\Delta'=(m+1)^2-(m-1)(2m-1)\geq 0$

$\Leftrightarrow -m^2+5m\geq 0$

$\Leftrightarrow m^2-5m\leq 0$

$\Leftrightarrow m(m-5)\leq 0\Leftrightarrow 0\leq m\leq 5$

Kết hợp 2 TH suy ra PT có nghiệm khi $0\leq m\leq 5$

b. Để PT có thể có 2 nghiệm thì PT phải là PT bậc 2.

$\Rightarrow m\neq 1$

PT có nghiệm pb khi mà: $\Delta'=(m+1)^2-(m-1)(2m-1)> 0$

$\Leftrightarrow -m^2+5m>0$

$\Leftrightarrow m^2-5m<0$

$\Leftrightarrow m(m-5)<0$

$\Leftrightarrow 0< m< 5$

Vậy $0<m< 5$ và $m\neq 1$

c. 

PT có 2 nghiệm trái dấu, tức là 2 nghiệm vừa phân biệt và trái dấu.

Từ kết quả phần b, PT có 2 nghiệm phân biệt khi $0< m< 5$ và $m\neq 1$ (1)

Theo định lý Viet, PT có 2 nghiệm trái dấu khi mà tích 2 nghiệm nhỏ hơn $0$

Hay: $\frac{2m-1}{m-1}<0$

$\Leftrightarrow \frac{1}{2}< m< 1$ (2)

Từ $(1); (2)\Rightarrow \frac{1}{2}< m< 1$

 

 

12 tháng 5 2019

a) Khi m=3 thì phương trình đã cho tương đương với:x2-3x+2=0<=>x2-x-2x+2=0<=>x(x-1)-2(x-1)=0<=>(x-1)(x-2)=0<=>\(\orbr{\begin{cases}x=1\\x=2\end{cases}}\)

Vậy: nghiệm của phương trình tại m=3 là 1 và 2

b) Ta có:\(\Delta\)=m2-4m+4=(m-2)2\(\ge\)0 (đúng với mọi m là số thực)

Vậy: phương trình đã cho có 2 nghiệm x1,x2 với mọi m

c)A=x12-2x1.x2+x22-4x1.x2=(x1+x2)2-4x1.x2

Theo Định lý Viète, ta có:x1+x2=m và x1.x2=m-1

Thay vào A, ta được:
A=m2-4.(m-1)=m2-4m+4=(m-2)2\(\ge\)0

Vậy: giá trị nhỏ nhất của A là 0 khi m=2