K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2019

Xét phương trình bậc hai một ẩn

ax2 + bx + c = 0 (a 0) và biệt thức = b2 – 4ac

TH1: Nếu < 0 thì phương trình vô nghiệm

TH2. Nếu = 0 thì phương trình có nghiệm

kép x1 = x2 = − b 2 a

TH3: Nếu > 0 thì phương trình có

hai nghiệm phân biệt x1, 2 = − b ± Δ 2 a

Đáp án cần chọn là: A

20 tháng 5 2019

* Giả sử cả 3 pt đều có nghiệm kép hoặc vô nghiệm ta có : 

pt \(x^2-2ax+b=0\) (1) có \(\Delta_1'=\left(-a\right)^2-b=a^2-b\le0\)

pt \(x^2-2bx+c=0\) (2) có \(\Delta_2'=\left(-b\right)^2-c=b^2-c\le0\)

pt \(x^2-2cx+a=0\) (3) có \(\Delta_3'=\left(-c\right)^2-a=c^2-a\le0\)

\(\Rightarrow\)\(\Delta_1'+\Delta_2'+\Delta_3'=\left(a^2+b^2+c^2\right)-\left(a+b+c\right)\le0\) (*) 

Lại có : \(0< a,b,c< 3\)\(\Rightarrow\)\(\hept{\begin{cases}a\left(3-a\right)>0\\b\left(3-b\right)>0\\c\left(3-c\right)>0\end{cases}\Leftrightarrow\hept{\begin{cases}3a>a^2\\3b>b^2\\3c>c^2\end{cases}}}\)

\(\Rightarrow\)\(\left(a^2+b^2+c^2\right)-\left(a+b+c\right)< 3\left(a+b+c\right)-\left(a+b+c\right)=2\left(a+b+c\right)=6>0\)

trái với (*) 

Vậy có ít nhất một phương trình có hai nghiệm phân biệt 

cái kia chưa bt làm -_- 

27 tháng 8 2020

Ta có:

\(\Delta_1+\Delta_2+\Delta_3=a^2-4b+b^2-4c+c^2-4a=a^2+b^2+c^2-48\)

Dễ thấy:\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=48\Rightarrow\Delta_1+\Delta_2+\Delta_3\ge0\)

Khi đó có ít nhất một phương trình có nghiệm

27 tháng 8 2020

còn c/m vô nghiệm thế nào z

30 tháng 5 2019

Xét phương trình bậc hai ax2 + bx + c = 0 (a ≠ 0)

với b = 2b’ và biệt thức Δ ' = b ' 2 − a c

Trường hợp 1: Nếu  Δ ' < 0 thì phương trình vô nghiệm

Trường hợp 2: Nếu  Δ ' = 0 thì phương trình có nghiệm kép x1 = x2 = − b ' a

Trường hợp 3: nếu Δ ' > 0 thì phương trình có hai nghiệm phân biệt

x1,2 = − b ' ± Δ ' a

Đáp án cần chọn là: D

31 tháng 3 2017

Với a = b = c = 2 thì ta có cả 3 phương trình đều có dạng.

\(x^2-2x+1=0\)

\(\Leftrightarrow x=1\)Vậy trong trường hợp này cả 3 phương trình đều chỉ có 1 nghiệm.

Vậy đề bài sai.

31 tháng 3 2017

Nếu xét các trường hợp khác thì sao alibaba ??