K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2017

a, Chứng minh được DBOF nội tiếp đường tròn tâm I là trung điểm của DO

b,  O A = O F 2 + A F 2 = 5 R 3 =>  cos D A B ^ = A F A O = 4 5

c, ∆AMO:∆ADB(g.g) =>  D M A M = O B O A

mà M O D ^ = O D B ^ = O D M ^ => DM = OM

=>  D B D M = D B O M = A D A M . Xét vế trái  B D D M - D M A M = A D - D M A M = 1

d,  D B = A B . tan D A B ^ = 8 R 3 . 3 4 = 2 R => O M = A O . tan D A B ^ = 5 R 4

=>  S O M D B = 13 R 2 8

S O M D B ngoài = S O M D B - 1 4 S O , R = R 2 8 13 - 2 π

15 tháng 7 2016

a) Chứng minh tứ giác OBDF nội tiếp.

Định tâm I đường tròn ngoại tiếp tứ OBDF.

Ta có: DBO = 900 và DFO = 900(tính chất tiếp tuyến)

Tứ giác OBDF có  DBO+DFO =1800 nên nội tiếp được trong một đường tròn.

Tâm I đường tròn ngoại tiếp tứ giác OBDF là trung điểm của OD

b) Tính Cos DAB .

Áp dụng định lí Pi-ta-go cho tam giác OFA vuông ở F ta được:

\(OA=\sqrt{OF^2+AF^2}=\sqrt{R^2+\left(\frac{4R}{3}\right)}=\frac{5R}{3}\)

\(COS\)\(FAO=\frac{AF}{OA}=\frac{4R}{3}:\frac{5R}{3}=0,8=>COSDAB=0,8\)

 c) Kẻ OM ⊥ BC ( M ∈ AD) . Chứng minh \(\frac{BD}{DM}-\frac{DM}{AM}\) =1

∗ OM // BD ( cùng vuông góc BC) ⇒ MOD BDO = (so le trong) và BDO ODM = (tính chất hai tiếp tuyến cắt nhau)

Suy ra: MDO =MOD.

Vậy tam giác MDO cân ở M. Do đó: MD = MO

∗ Áp dụng hệ quả định lí Ta let vào tam giác ABD có OM // BD ta được:

\(\frac{BD}{OM}=\frac{AD}{AM}HAY\frac{BD}{DM}=\frac{AD}{AM}\)(VÌ MD=MO)

\(=>\frac{BD}{DM}=\frac{AM+DM}{AM}=1+\frac{DM}{AM}\)

Do đó:\(\frac{DM}{BM}-\frac{DM}{AM}=1\left(đpcm\right)\)

 d) Tính diện tích phần hình tứ giác OBDM ở bên ngoài nửa đường tròn (O) theo R.

∗Áp dụng hệ thức lượng cho tam giác OAM vuông ở O có OF ⊥ AM ta được:

OF2 = MF. AF hay R2 = MF. \(\frac{4r}{3}\)⇒ MF = \(\frac{3r}{4}\)

∗ Áp dụng định lí pi ta go cho tam giác MFO vuông tại F ta được:

OM =  \(\sqrt{OF^2+MF^2}=\sqrt{R^2+\frac{3R}{4}^2}=\frac{5R}{4}\)

∗ OM //BD =>\(\frac{OM}{BD}=\frac{AO}{AB}=>BD=\frac{OM.AB}{OA}=\frac{5R}{4}.\left(\frac{5R}{3}+R\right):\frac{5R}{3}=2R\)

Gọi S là diện tích phần hình tứ giác OBDM ở bên ngoài nửa đường tròn (O)

 S1 là diện tích hình thang OBDM.

S2 là diện tích hình quạt góc ở tâm BON = 90 0

Ta có: S = S1 – S2 .

\(S1=\frac{1}{2}\left(OM+BD\right).OB=\frac{1}{2}\left(\frac{5R}{4}+2R\right).R=\frac{13R^2}{8}\left(đvdt\right)\)

\(S2=\frac{\pi R^2.90^0}{360^0}=\frac{\pi R^2}{4}\left(đvdt\right)\)

Vậys=s1-s2=\(\frac{13r^2}{8}-\frac{\pi r^2}{4}=\frac{r^2}{8}\left(13-2\pi\right)\left(đvdt\right)\)

avt726149_60by60.jpg Phạm Cao Thúy An: Biết rồi còn hỏi làm gì?

20 tháng 6 2019

a) Chứng minh tứ giác OBDF nội tiếp.       

  Xác định tâm I đường tròn ngoại tiếp tứ OBDF. 

Giải :  

 Ta có: \(\widehat{DBO}=90^o\)và  \(\widehat{DFO}=90^o\)(tính chất tiếp tuyến)       

Tứ giác OBDF có \(\widehat{DBO}+\widehat{DFO}=90^o+90^o=180^o\)nên nội tiếp được trongmột đường tròn.           

  Tâm I đường tròn ngoại tiếp tứ giác OBDF là trung điểm của OD

20 tháng 6 2019

mk làm được phần a rồi đấy, ai giúp mk phần b,c,d thôi. cảm ơn 

tiện thể xem hộ xem đúng k nha

AH
Akai Haruma
Giáo viên
9 tháng 4 2018

Lời giải:

Ôn tập Căn bậc hai. Căn bậc ba

a)

Vì $AF$ là tiếp tuyến của $(O)$ nên \(AF\perp OF\) hay \(DA\perp OF\Rightarrow \widehat{DFO}=90^0\)

$DB$ là tiếp tuyến của $(O)$ nên \(DB\perp OB\Rightarrow \widehat{DBO}=90^0\)

Tứ giác $DBOF$ có tổng hai góc đối nhau

\(\widehat{DFO}+\widehat{DBO}=90^0+90^0=180^0\) nên là tứ giác nội tiếp.

b)

Áp dụng định lý Pitago cho tam giác $OFA$ vuông tại $F$:

\(OA=\sqrt{OF^2+FA^2}=\sqrt{R^2+(\frac{4}{3}R)^2}=\frac{5}{3}R\)

Ta có:

\(\cos \widehat{DAB}=\cos \widehat{OAF}=\frac{FA}{OA}=\frac{\frac{4}{3}R}{\frac{5}{3}R}=\frac{4}{5}\)

c) \(OM\perp BA, BD\perp BA\Rightarrow OM\parallel BD\)

Theo tính chất hai đường tiếp tuyến cắt nhau suy ra $DO$ là phân giác góc \(\widehat{BDF}\)

\(\Rightarrow \widehat{BDO}=\widehat{ODM}\)

Mà \(OM\parallel BD\Rightarrow \widehat{MOD}=\widehat{ODB}\) (so le trong)

Suy ra \(\widehat{ODM}=\widehat{MOD}\Rightarrow \triangle MDO\) cân tại $M$

\(\Rightarrow MD=MO\)

Áp dụng định lý Thales với \(MO\parallel DB\) ta có:

\(\frac{DA}{MA}=\frac{DB}{MO}=\frac{DB}{DM}\)

\(\Leftrightarrow \frac{DM+MA}{MA}=\frac{DB}{DM}\Rightarrow \frac{BD}{DM}-\frac{DM}{AM}=1\) (đpcm)

26 tháng 3 2018

a) Do C thuộc nửa đường tròn nên \(\widehat{ACB}=90^o\) hay AC vuông góc MB.

Xét tam giác vuông AMB có đường cao AC nên áp dụng hệ thức lượng ta có:

\(BC.BM=AB^2=4R^2\)

b) Xét tam giác MAC vuông tại C có CI là trung tuyến ứng với cạnh huyền nên IM = IC = IA

Vậy thì \(\Delta ICO=\Delta IAO\left(c-c-c\right)\)

\(\Rightarrow\widehat{ICO}=\widehat{IAO}=90^o\)

Hay IC là tiếp tuyến tại C của nửa đường tròn.

c) Xét tam giác vuông AMB có đường cao AC, áp dụng hệ thức lượng ta có:

\(MB.MC=MA^2=4IC^2\Rightarrow IC^2=\frac{1}{4}MB.MC\)

Xét tam giác AMB có I là trung điểm AM, O là trung điểm AB nên IO là đường trung bình tam giác ABM.

Vậy thì \(MB=2OI\Rightarrow MB^2=4OI^2\)   (1) 

Xét tam giác vuông MAB, theo Pi-ta-go ta có:

\(MB^2=MA^2+AB^2=MA^2+4R^2\)   (2)

Từ (1) và (2) suy ra \(4OI^2=MA^2+4R^2.\)

d) Do IA, IC là các tiếp tuyến cắt nhau nên ta có ngay \(AC\perp IO\Rightarrow\widehat{CDO}=90^o\)

Tương tự \(\widehat{CEO}=90^o\)

Xét tứ giác CDOE có \(\widehat{CEO}=\widehat{CDO}=90^o\)mà đỉnh E và D đối nhau nên tứ giác CDOE nội tiếp đường tròn đường kính CO.

Xét tứ giác CDHO có: \(\widehat{CHO}=\widehat{CDO}=90^o\) mà đỉnh H và D kề nhau nên CDHO nội tiếp đường tròn đường kính CO.

Vậy nên C, D, H , O, E cùng thuộc đường tròn đường kính CO.

Nói cách khác, O luôn thuộc đường tròn ngoại tiếp tam giác HDE.

Vậy  đường tròn ngoại tiếp tam giác HDE luôn đi qua điểm O cố định.

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em