K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2019

Đáp án D.

Hướng dẫn giải:

Kẻ S H ⊥ A B ⇒ S H ⊥ ( A B C D )  

Do ∆ S B D  vuông tại S nên H B H D = S B S D 2 = 1 3  

Ta có  B D = A B 2 + A D 2 = a 7

⇒ H D = 3 a 7 4

Mặt khác

 

Ta có  S A B C D = A B . A D = 2 a 3 2

V S . A B C D = 1 3 S H . S A B C D = a 7 2 2

8 tháng 4 2016

D A B C N M I G H

\(d\left(M,BN\right)=\frac{\left|13\left(-1\right)-10.2+13\right|}{\sqrt{13^2+10^2}}=\frac{20}{\sqrt{269}}\)

\(H\in\Delta\Leftrightarrow H\left(3a;2a\right)\)

Gọi I là tâm ABCD, G là giao điểm của AC và BN. Ta thấy G là trọng tâm của tam giác BCD

Suy ra \(CG=\frac{2}{3}.CI=\frac{1}{3}AC\) mà \(AM=\frac{1}{4}AC\Rightarrow MG=\frac{5}{12}AC\Rightarrow CG=\frac{4}{5}MG\)

\(\Rightarrow d\left(C,BN\right)=\frac{4}{5}d\left(M,BN\right)=\frac{16}{\sqrt{269}}\Rightarrow d\left(H,BN\right)=2d\left(C,BN\right)=\frac{32}{\sqrt{269}}\)

\(\Leftrightarrow\frac{\left|13.3a-10.2a+13\right|}{\sqrt{269}}=\frac{32}{\sqrt{269}}\Leftrightarrow a=1\) hoặc \(a=\frac{-45}{19}\)

Vì H và M nằm khác phía đối với đường thẳng BN nên \(H\left(3;2\right)\)

8 tháng 4 2016

Tiếp.........

Ta thấy \(CM=\frac{3AC}{4}=\frac{2AB}{4}=\frac{2CD}{4}=\frac{CD}{2}=CD=CH\Rightarrow\Delta MHN\) vuông tại M

HM có phương trình \(y-2=0\Rightarrow MN:x+1=0\Rightarrow N\left(-1;0\right)\Rightarrow C\left(1;1\right),D\left(-3;-1\right)\)

Do \(\overrightarrow{CM}=3\overrightarrow{MA}\Rightarrow A\left(\frac{-5}{3};\frac{7}{3}\right)\Rightarrow I\left(\frac{-1}{3};\frac{5}{3}\right)\Rightarrow B\left(\frac{7}{3};\frac{13}{3}\right)\)

Vậy \(A\left(\frac{-5}{3};\frac{7}{3}\right);B\left(\frac{7}{3};\frac{13}{3}\right);C\left(1;1\right);D\left(-3.-1\right)\)

23 tháng 6 2016

HCN ko cho bk cạnh hả b?

 

28 tháng 3 2016

A B C D S E K H

Gọi H là trung điểm của AB, suy ra \(SH\perp\left(ACBD\right)\)

Do đó \(SH\perp HD\)  ta có :

\(SH=\sqrt{SD^2-DH^2}=\sqrt{SD^2-\left(AH^2+AD^2\right)}=a\)

Suy ra \(V_{s.ABCD}=\frac{1}{3}.SH.S_{ABCD}=\frac{a^2}{3}\)

Gọi K là hình chiếu vuông góc của H trên BD và E là hình chiếu vuông góc của H lên SK. Ta có :

\(\begin{cases}BD\perp HK\\BD\perp SH\end{cases}\) \(\Rightarrow BH\perp\) (SHK)

=> \(BD\perp HE\) mà \(HE\perp SK\) \(\Rightarrow HE\perp\) (SBD)

Ta có : HK=HB.\(\sin\widehat{KBH}\)\(=\frac{a\sqrt{2}}{4}\)

Suy ra \(HE=\frac{HS.HK}{\sqrt{HS^2+HK^2}}=\frac{a}{3}\)

Do đó \(d\left(A:\left(SBD\right)\right)\)=2d(H; (SBD)) =3HE=\(\frac{2a}{3}\)

 

 

30 tháng 3 2016

cau 7 de thi toan thpt quoc gia 2015

21 tháng 7 2016

hep

 

6 tháng 4 2016

S B N M C D I K A

Gọi I là trung điểm của đoạn AB \(\Rightarrow SI\perp AB,\left(SAB\right)\perp\left(ABCD\right)\Rightarrow SI\perp\left(ABCD\right)\)

Nên \(\widehat{SCI}=\left(\widehat{SC,\left(ABCD\right)}\right)=60^0,CI=\frac{a\sqrt{3}}{2}\Rightarrow SI=CI\tan60^0=\frac{3a}{2}\)

Gọi M là trung điểm của đoạn BC, N là trung điểm đoạn BM

\(AM=\frac{a\sqrt{3}}{2}\Rightarrow IN=\frac{a\sqrt{3}}{4}\)
Ta có : \(S_{ABCD}=2S_{\Delta ABC}=\frac{a^2\sqrt{3}}{2}\Rightarrow V_{S.ABCD}=\frac{1}{3}.\frac{a^2\sqrt{3}}{2}.\frac{3a}{2}=\frac{a^2\sqrt{3}}{4}\)

Ta có \(BC\perp IN,BC\perp SI\Rightarrow BC\perp\left(SIN\right)\)

Trong mặt phẳng (SIN) kẻ \(IK\perp\left(SN\right),K\in SN\), ta có :

\(\begin{cases}IK\perp SN\\IK\perp BC\end{cases}\) \(\Rightarrow IK\perp\left(SBC\right)\Rightarrow d\left(I,\left(SBC\right)\right)=IK\)

Lại có : 

\(\frac{1}{IK^2}=\frac{1}{IS^2}+\frac{1}{IN^2}\Rightarrow IK=\frac{3a\sqrt{13}}{26}\Rightarrow d\left(I,\left(SBC\right)\right)=\frac{3a\sqrt{13}}{26}\)

                           \(\Rightarrow d\left(A,\left(SBC\right)\right)=\frac{3a\sqrt{13}}{13}\)

 

21 tháng 9 2021

Em học lớp 6 em ko câu trả lời sorry chị

21 tháng 9 2021

dạ anh nhờ bn anh hay ai tl thay nha

18 tháng 4 2016

S H B K A I C D

Gọi K là hình chiếu của I lên AB

Suy ra \(\widehat{SKI=60^0}\)

Mà \(\frac{BI}{ID}=\frac{BC}{AD}=\frac{a}{3a}=\frac{1}{2}\)\(\Rightarrow\frac{BI}{BI+ID}=\frac{1}{4}\)\(\Rightarrow\frac{BI}{BD}=\frac{1}{4}\)

Suy ra \(\frac{KI}{DA}=\frac{1}{4}\)\(\Rightarrow KI=\frac{3a}{4}\Rightarrow SI=\frac{3a\sqrt{3}}{4}\)

Do \(IK\) \\ \(AD\Rightarrow\frac{KI}{AD}=\frac{BI}{BD}\)

\(V_{A.ABCD}=\frac{1}{3}.SI.S_{ABCD}=\frac{1}{3}.\frac{3a\sqrt{3}}{4}.\frac{1}{2}\left(a+3a\right)a=\frac{a^3\sqrt{3}}{2}\)

Gọi H là hình chiếu của I trên SK. Ta có \(\begin{cases}AB\perp IK\\AB\perp SI\end{cases}\)\(\Rightarrow AB\perp IH\)

Từ đó suy ra \(IK\perp\left(SAB\right)\Rightarrow d\left(I,\left(SAB\right)\right)=IK\)

Mà do \(DB=4IB\Rightarrow\left(D,\left(SAB\right)\right)=4d\left(I,\left(SAB\right)\right)=4IH\)

Lại có \(\frac{1}{IH^2}=\frac{1}{IS^2}+\frac{1}{IK^2}=\frac{16}{27a^2}+\frac{16}{9a^2}=\frac{64}{27a^2}\Leftrightarrow IH=\frac{3a\sqrt{3}}{8}\)

Vậy  \(d\left(D,\left(SAB\right)\right)=\frac{3a\sqrt{3}}{2}\)

5 tháng 4 2016

S M H G N A O D C

Ta có \(\begin{cases}BC\perp SA\\BC\perp AB\end{cases}\)\(\Rightarrow BC\perp\left(SAB\right)\)\(\Rightarrow BC\perp AM\) (vì \(AM\subset\left(SAB\right)\left(1\right)\)

Mặt khác \(SC\perp\alpha\Rightarrow SA\perp AM\) (vì \(AM\subset\alpha\)) (2)

Từ (1) và (2) suy ra \(AM\perp\left(SBC\right)\Rightarrow AM\perp MG\) (vì \(MG\subset\left(SBC\right)\))

\(\Rightarrow\Delta AMG\) vuông tại M, tương tự ta cũng có tam giác ANG vuông tại N \(\Rightarrow\) tâm H đường tròn đáy của (H) là trung điểm AG, có bán kính \(R=\frac{AG}{2}\)

Xét tam giác vuông SAC tại A có \(AG=\frac{SA.AC}{SC}=\frac{\sqrt{6}}{3}a\Rightarrow R=\frac{\sqrt{6}}{6}a\)

Vì OH là đường cao (H)\(\Rightarrow OH\perp\alpha\Rightarrow OH\)//\(SC\Rightarrow O\) là giao điểm hai đường chéo AC, BD

\(\Rightarrow OH=\frac{1}{2}CG\).

Xét tam giác vuoongSAC có AG là đường cao, nên \(CG=\frac{AC^2}{SC}=\frac{2}{\sqrt{3}}a\Rightarrow OH=\frac{\sqrt{3}}{3}a\)

Vậy thể tích hình nón là \(V_{\left(H\right)}=\frac{1}{3}\pi.R^2.OH=\frac{\sqrt{3}}{54}\pi a^3\)

23 tháng 5 2017

Ôn tập cuối năm môn hình học 12