Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(F=\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\)
\(\Leftrightarrow F=\frac{a^2}{ab+ac}+\frac{b^2}{bc+bd}+\frac{c^2}{cd+ca}+\frac{d^2}{da+db}\)
\(\Leftrightarrow F\ge\frac{\left(a+b+c+d\right)^2}{2ac+2bd+\left(a+c\right)\left(b+d\right)}=P\)
\(\Leftrightarrow P=\frac{a^2+b^2+c^2+2ab+2bc+2cd+2ad+2ac+2bd}{ab+ac+bc+bd+cd+ac+ad+bd}\)
\(\Leftrightarrow P=\frac{\left(a^2+c^2\right)+\left(b^2+d^2\right)+2ab+2bc+2cd+2ad+2ac+2bd}{2ac+2bd+ab+bc+cd+ad}\)
(Vì \(a^2+c^2\ge2ac\Leftrightarrow\left(a-c\right)^2\ge0\)luôn đúng; \(b^2+d^2\ge2bd\Leftrightarrow\left(b-d\right)^2\ge0\)luôn đúng)
\(\Leftrightarrow P\ge\frac{2ac+2bd+2ab+2bc+2cd+2ad+2ac+2bd}{2ac+2bd+ab+cd+ad+ac+bd}\)
\(\Leftrightarrow P\ge\frac{4ac+4bd+2ab+2bc+2cd+2ad}{2ac+2bd+ab+bc+cd+ad}=2\)
\(\Leftrightarrow F\ge P\ge2\)
\(\LeftrightarrowĐPCM\)
Ta có:
\(\frac{a}{b+c+d}+1=\frac{b}{a+c+d}+1=\frac{c}{a+b+d}+1=\frac{d}{a+b+c}+1\)
\(\Rightarrow\) \(\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{a+b+d}=\frac{a+b+c+d}{a+b+c}\)
Vì \(a+b+c+d\ne0\) nên \(a=b=c=d\)
Do đó: \(M=4\)
Cần cù bù thông minh.
a
\(\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)
\(=\left(a^2c^2+2abcd+b^2d^2\right)+\left(a^2d^2-2abcd+b^2c^2\right)\)
\(=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
b
\(\left(a+b+c\right)^2+a^2+b^2+c^2\)
\(=a^2+b^2+c^2+2\left(ab+bc+ca\right)+a^2+b^2+c^2\)
\(=\left(a^2+2ab+b^2\right)+\left(b^2+2bc+c^2\right)+\left(c^2+2ac+a^2\right)\)
\(=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)
a) \(A=\left(\frac{1}{4}x-y\right)\left(x^2+4xy+16y^2\right)+4\left(4y^3-\frac{1}{16}x^3+1\right)\)
\(\Leftrightarrow A=\frac{1}{4}\left(x-4y\right)\left(x^2+4xy+16y^2\right)+16y^3-\frac{1}{4}x^3+4\)
\(\Leftrightarrow A=\frac{1}{4}\left(x^3-64y^3\right)+16y^3-\frac{1}{4}x^3+4\)
\(\Leftrightarrow A=\frac{1}{4}x^3-16y^3+16y^3-\frac{1}{4}x^3+4\)
\(\Leftrightarrow A=4\)
b) \(B=2x\left(x-4\right)^2-\left(x+5\right)\left(x-2\right)\left(x+2\right)+2\left(x-5\right)^2-\left(x-1\right)^2\)
\(\Leftrightarrow B=2x\left(x^2-8x+16\right)-\left(x+5\right)\left(x^2-4\right)+2\left(x^2-10x+25\right)-\left(x^2-2x+1\right)\)
\(\Leftrightarrow B=2x^3-16x^2+32x-x^3-5x^2+4x+20+2x^2-20x+50-x^2+2x-1\)
\(\Leftrightarrow B=x^3-20x^2+18x+69\)
c) \(C=\frac{80x^3-125x}{3\left(x-3\right)-\left(x-3\right)\left(8-4x\right)}\)
\(\Leftrightarrow C=\frac{5x\left(16x^2-25\right)}{\left(x-3\right)\left(3-8+4x\right)}\)
\(\Leftrightarrow C=\frac{5x\left(4x-5\right)\left(4x+5\right)}{\left(x-3\right)\left(4x-5\right)}\)
\(\Leftrightarrow C=\frac{5x\left(4x+5\right)}{x-3}\)
\(\Leftrightarrow C=\frac{20x^2+25x}{x-3}\)
d) \(D=\frac{\left(a-b\right)\left(c-d\right)}{\left(b^2-a^2\right)\left(d^2-c^2\right)}\)
\(\Leftrightarrow D=\frac{\left(a-b\right)\left(c-d\right)}{\left(a^2-b^2\right)\left(c^2-d^2\right)}\)
\(\Leftrightarrow D=\frac{\left(a-b\right)\left(c-d\right)}{\left(a-b\right)\left(a+b\right)\left(c-d\right)\left(c+d\right)}\)
\(\Leftrightarrow D=\frac{1}{\left(a+b\right)\left(c+d\right)}\)
Chúc bạn học tốt !
Bài 7
\(a,A=x^2-2x+5\)
\(=\left(x^2-2x+1\right)+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
GTNN \(A=4\) khi \(\left(x-1\right)^2=0\Rightarrow x=1\)
\(b,B=x^2-x+1\)
\(=\left(x^2-2\cdot\frac{1}{2}x+\frac{1}{4}\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
\(c,C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
Đặt \(x^2+5x=t\)
\(\Rightarrow C=\left(t-6\right)\left(t+6\right)\)
\(=t^2-36\)
\(\left(x^2+5x\right)^2-36\ge36\forall x\)
\(d,D=x^2+5y^2-2xy+4y-3\)
\(=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)-4\)
\(=\left(x-y\right)^2+\left(2y+1\right)^2-4\ge-4\)
a, đkxđ:x# 2 , x# -2
b,
A = \(\frac{x+1}{x-2}\)=0
<=> x + 1 = 0
<=> x = -1
c,B=\(\frac{x2}{x^2-4}\)
Mà x= \(-\frac{1}{2}\)
<=> \(\frac{1}{4}:\left(\frac{1}{4}-4\right)\)
<=>\(\frac{1}{4}:\frac{-15}{4}\)
<=>\(\frac{1}{4}.\frac{4}{-15}\)
<=>\(\frac{-1}{15}\)
d, \(A-B=\frac{x+1}{x-2}-\frac{x^2}{x^2-4}\)
\(=\frac{\left(x+1\right)\left(x+2\right)-x^2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^2+3x+2-x^2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{3x+2}{\left(x-2\right)\left(x+2\right)}\)
Vì AB//CD
=> A + D = 180° ( trong cùng phía)
Mà A = 3D
=> 3D + D = 180°
=> 4D = 180°
=> D = 45°
=> A = 180° - 45° = 135°
Vì ABCD là hình thang cân
=> A = B = 135°
=> C = D = 45°
3/
a/ \(A=\left(x-y\right)^2+\left(x+y\right)^2.\)
\(A=\left(x^2-2xy+y^2\right)+\left(x^2+2xy+y^2\right)\)
\(A=x^2-2xy+y^2+x^2+2xy+y^2\)
\(A=2x^2+2y^2\)
b/ \(B=\left(2a+b\right)^2-\left(2a-b\right)^2\)
\(B=\left(4a^2+4ab+b^2\right)-\left(4a^2-4ab+b^2\right)\)
\(B=4a^2+4ab+b^2-4a^2+4ab-b^2\)
\(B=8ab\)
c/ \(C=\left(x+y\right)^2-\left(x-y\right)^2\)
\(C=\left(x^2+2xy+y^2\right)-\left(x^2-2xy+y^2\right)\)
\(C=x^2+2xy+y^2-x^2+2xy-y^2\)
\(C=4xy\)
d/ \(D=\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)
\(D=\left(4x^2-4x+1\right)-2\left(4x^2-12x+9\right)+4\)
\(D=4x^2-4x+1-8x^2+24x-18+4\)
\(D=-4x^2+20x-13\)
d> Ta có: \(\frac{-1}{x-2}\)( Theo a )
Để phân thức là số nguyên <=> -1 chia hết cho x-2 => x-2 thuộc Ư(-1)=+-1
*> X-2=1 => X=3 (TMĐK)
*> X-2=-1 => X=1 (TMĐK)
Đáp án cần chọn là: A
Kẻ BH ⊥ CD tại H.
Xét tam giác vuông BDH, theo định lý Pytago, ta có B D 2 = D H 2 + B H 2
Xét tam giác vuông CBH, theo định lý Pytago, ta có B C 2 = C H 2 + B H 2
Suy ra B D 2 - B C 2 = D H 2 + B H 2 - C H 2 + B H 2
= D H 2 - C H 2 = B H + D H × D H - B H = C D × A B