K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2016

Ta có:

\(\frac{a}{b+c+d}+1=\frac{b}{a+c+d}+1=\frac{c}{a+b+d}+1=\frac{d}{a+b+c}+1\)

\(\Rightarrow\)  \(\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{a+b+d}=\frac{a+b+c+d}{a+b+c}\)

Vì   \(a+b+c+d\ne0\)  nên   \(a=b=c=d\)

Do đó:   \(M=4\)

3 tháng 1 2016

M =4 nha . TICK MÌNH ĐI !!!!!!!!!!!!!!!!!!!!!!

8 tháng 4 2020

Ta có: \(F=\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\)

\(\Leftrightarrow F=\frac{a^2}{ab+ac}+\frac{b^2}{bc+bd}+\frac{c^2}{cd+ca}+\frac{d^2}{da+db}\)  

\(\Leftrightarrow F\ge\frac{\left(a+b+c+d\right)^2}{2ac+2bd+\left(a+c\right)\left(b+d\right)}=P\)

\(\Leftrightarrow P=\frac{a^2+b^2+c^2+2ab+2bc+2cd+2ad+2ac+2bd}{ab+ac+bc+bd+cd+ac+ad+bd}\)

\(\Leftrightarrow P=\frac{\left(a^2+c^2\right)+\left(b^2+d^2\right)+2ab+2bc+2cd+2ad+2ac+2bd}{2ac+2bd+ab+bc+cd+ad}\)

(Vì \(a^2+c^2\ge2ac\Leftrightarrow\left(a-c\right)^2\ge0\)luôn đúng; \(b^2+d^2\ge2bd\Leftrightarrow\left(b-d\right)^2\ge0\)luôn đúng)

\(\Leftrightarrow P\ge\frac{2ac+2bd+2ab+2bc+2cd+2ad+2ac+2bd}{2ac+2bd+ab+cd+ad+ac+bd}\)

\(\Leftrightarrow P\ge\frac{4ac+4bd+2ab+2bc+2cd+2ad}{2ac+2bd+ab+bc+cd+ad}=2\)

\(\Leftrightarrow F\ge P\ge2\)

\(\LeftrightarrowĐPCM\)

5 tháng 3 2020

Ta có: abcd=1 và a+b+c+d=\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\)

Do đó: a+b-\(\left(\frac{1}{a}+\frac{1}{b}\right)+c+d-\left(\frac{1}{c}+\frac{1}{d}\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(1-\frac{1}{ab}\right)+\left(c+d\right)\left(1-\frac{1}{cd}\right)=0\)

\(\Leftrightarrow\frac{\left(a+b\right)\left(ab-1\right)}{ab}+\left(c+d\right)\left(1-ab\right)=0\)

\(\Leftrightarrow\left(ab-1\right)\left(\frac{a+b}{ab}-c-d\right)=0\)

\(\Leftrightarrow\left(ab-1\right)\left(a+b-abc-abd\right)=0\)

\(\Leftrightarrow\left(ab-1\right)\left[a\left(1-bc\right)+b\left(1-ad\right)\right]=0\)

\(\Leftrightarrow\left(ab-1\right)\left[a\left(1-bc\right)+b\left(abcd-ad\right)\right]=0\)

\(\Leftrightarrow\left(ab-1\right)\left(1-bc\right)\left(a-abd\right)=0\)

\(\Leftrightarrow a\left(ab-1\right)\left(1-bc\right)\left(1-bd\right)=0\)

<=> ab-1=0 hoặc 1-bc=0 hoặc 1-bd=0

<=> ab=1 hoặc bc=1 hoặc bd=1

\(\Leftrightarrow a\left(ab-1\right)\left(1-bc\right)\left(1-bd\right)=0\)

9 tháng 3 2019

Ta có : \(\frac{20082009}{242}=82983+\frac{123}{242}\)

                                   \(=82983+\frac{1}{\frac{242}{123}}\)

                                  \(=82983+\frac{1}{1+\frac{119}{123}}\)

                                  \(=82983+\frac{1}{1+\frac{1}{\frac{123}{119}}}\)

                                   \(=82983+\frac{1}{1+\frac{1}{1+\frac{4}{119}}}\)

                                  \(=82983+\frac{1}{1+\frac{1}{1+\frac{1}{\frac{119}{4}}}}\)

                                 \(=82983+\frac{1}{1+\frac{1}{1+\frac{1}{29+\frac{3}{4}}}}\)

                                \(=82983+\frac{1}{1+\frac{1}{1+\frac{1}{29+\frac{1}{\frac{4}{3}}}}}\)

                               \(=82983+\frac{1}{1+\frac{1}{1+\frac{1}{29+\frac{1}{1+\frac{1}{3}}}}}\)

                                \(=82983+\frac{1}{1+\frac{1}{1+\frac{1}{29+\frac{1}{1+\frac{1}{\frac{3}{1}}}}}}\)

                                \(=82983+\frac{1}{1+\frac{1}{1+\frac{1}{29+\frac{1}{1+\frac{1}{2+\frac{1}{1}}}}}}\)

\(\Rightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e+\frac{1}{f+\frac{1}{g}}}}}}=82983+\frac{1}{1+\frac{1}{1+\frac{1}{29+\frac{1}{1+\frac{1}{2+\frac{1}{1}}}}}}\)

Cân bằng hệ số ta thu được \(a=82983\)

                                            \(b=1\)

                                            \(c=1\)

                                           \(d=29\)

                                           \(e=1\)

                                          \(f=2\)

                                         \(g=1\)

P/S: e lớp 6 , có gì sai thông cảm ạ =))

9 tháng 3 2019

Incursion giỏi dữ vậy ta

4 tháng 4 2020

bài này chắc có câu a đúng ko

ta có \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}=\frac{a}{c}=\frac{c}{b}=\frac{b}{a}\)

\(\Leftrightarrow a^4c^2+b^4a^2+c^4b^2=abc\left(a^2c+c^2a+b^2c\right)\)

đặt \(x=a^2c;y=b^2a;z=c^2b\)ta được

\(x^2+y^2+z^2=xy+yz+zx\)

áp dụng kết quả của câu a ta đc

\(\left(x-y\right)^2+\left(y-2\right)^2+\left(z-x\right)^2=0=>x=y=z\)

\(=>a^2c=b^2a=c^2b=>ac=b^2;bc=a^2;ab=c^2\)

=>a=b=c(dpcm)

4 tháng 4 2020

\(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}=\frac{a}{c}+\frac{c}{b}+\frac{b}{a}\)

Đặt \(\frac{a}{b}=x;\frac{b}{c}=y;\frac{c}{a}=z\)

Khi đó:\(x^2+y^2+z^2=xy+yz+zx\)

\(\Leftrightarrow2\left(x^2+y^2+z^2\right)=2\left(xy+yz+zx\right)\)

\(\Leftrightarrow2\left(x^2+y^2+z^2\right)-2\left(xy+yz+zx\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

Mà \(\left(x-y\right)^2\ge0;\left(y-z\right)^2\ge0;\left(z-x\right)^2\ge0\)

\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

Dấu "=" xảy ra tại x=y=z hay a=b=c

Suy ra điều fải chứng minh

Cho một biểu thức, biết biểu thức là:\(\left[\left(a+b\right)^3+\left(c-d\right)^3-\left(a+c\right)^3-\left(b-d\right)^3\right]\left(mn\right)^2=63504.\)Các số cần tìm cho, biết:- TRC của 4 số a, b, c, d là 4,5. TRC của 2 số a và c là 5. a hơn c 2 đơn vị, d bằng \(\frac{1}{2}b\).- TRC của 4 số a, b, m, n là 5. Biết \(\frac{m}{a+c}=0,7\), tổng của a và b là a + b, tổng của m và n là \(\left(a+b\right)\frac{10-1}{10+1}\).a) Tìm a, b,...
Đọc tiếp

Cho một biểu thức, biết biểu thức là:

\(\left[\left(a+b\right)^3+\left(c-d\right)^3-\left(a+c\right)^3-\left(b-d\right)^3\right]\left(mn\right)^2=63504.\)

Các số cần tìm cho, biết:

- TRC của 4 số a, b, c, d là 4,5. TRC của 2 số a và c là 5. a hơn c 2 đơn vị, d bằng \(\frac{1}{2}b\).

- TRC của 4 số a, b, m, n là 5. Biết \(\frac{m}{a+c}=0,7\), tổng của a và b là a + b, tổng của m và n là \(\left(a+b\right)\frac{10-1}{10+1}\).

a) Tìm a, b, c, d, m và n.

b) Nếu thêm p vào bên phải của biểu thức, biết \(p\ne0\)và ở giữa p có 16 số chẵn, nhưng các số chẵn ≈ 7 ; 8. Các số chẵn chia hết cho 5. Tính giá trị của biểu thức mới.

c) Tính:

 \(am^2\left(5^3+abcd-\left(ab^2-cd^2\right)\right)+\left(\sqrt{\left(m+1\right)^{2c}}-\sqrt{\left(50c\right)^c\times2n}\right)..\)

d) Tính giá trị của X, biết rằng:

\(X=9ab-9cd+9mn+...+\frac{9mn}{8}.\)

Chứng minh rằng: \(X⋮45\)và giá trị của ... là số có tử số của số đó bé hơn tử số của số \(\frac{975}{4}\)là Y. Biết rằng:

\(Y=\frac{15-1}{15+1}\left(d^d-\frac{d}{m}\right)n\sqrt{c}.\)

 

0

d> Ta có: \(\frac{-1}{x-2}\)( Theo a )

 Để phân thức là số nguyên <=> -1 chia hết cho x-2 => x-2 thuộc Ư(-1)=+-1

  *> X-2=1 => X=3 (TMĐK)

  *> X-2=-1 => X=1 (TMĐK)

3 tháng 1 2019

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)

\(\Leftrightarrow\frac{\left(ab+bc+ac\right).\left(a+b+c\right)-abc}{abc.\left(a+b+c\right)}=0\Leftrightarrow\left(ab+bc+ac\right).\left(a+b+c\right)-abc=0\)

\(\Leftrightarrow\left(a+b\right).\left(a+c\right).\left(c+b\right)=0\Leftrightarrow\orbr{\begin{cases}a=-b\\a=-c\end{cases}\text{hoac }c=-b}\)

thay vào rồi tính (nhớ đưa dấu âm lên tử nha) còn phần phan tích sẽ giải thích sau-bây h bận >:

3 tháng 1 2019

\(\left(a+b+c\right).\left(ab+ac+bc\right)-abc=0\)

\(\Leftrightarrow a^2c+a^2b+abc+b^2a+b^2c+abc+c^2a+c^2b=0\)

\(\Leftrightarrow\left(abc+a^2c\right)+\left(abc+b^2c\right)+\left(a^2b+ab^2\right)+\left(c^2a+c^2b\right)=0\)

\(\Leftrightarrow ac.\left(a+b\right)+cb.\left(a+b\right)+ab.\left(a+b\right)+c^2.\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right).\left(ac+cb+ab+c^2\right)=0\)

\(\Leftrightarrow\left(a+b\right).\left[c\left(a+c\right)+b.\left(a+c\right)\right]=\left(a+b\right).\left(a+c\right).\left(c+b\right)=0\)

~~ cách này dài dòng >: but t ko nghĩ đc cách nào ngắn hưn =(