K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2018

 

 

 

 

 

 

Gọi G là trọng tâm tam giác S A C ⇒ M N đi qua G

V 1 V = 1 2 V S A M N V S A B D + V S M N P V S B D C = 1 2 S M S D . S N S B + S P S C . S M S D . S N S B = 3 4 x . y

V 1 V = 1 2 V S A P N V S A C B + V S A M P V S A D C = 1 2 S P S C . S N S B + S M S D . S P S C = 1 4 x + y

Với x = S N S B ; Y = S M S D

⇒ 3 x y = x + y ≥ 2 x y ⇔ 9 x 2 y 2 ≥ 4 x y ⇔ 3 4 x y ≥ 1 3

Vậy V 1 V  đạt giá trị nhỏ nhất bằng 1 3

Đáp án cần chọn là D

4 tháng 6 2019

Chọn đáp án B.

5 tháng 9 2019

Đáp án C.

V 1 V = 1 2 V S . A M P V S . A D C + V S . A N P V S . A B C = 1 2 . S P S C S M S D + S N S B = x + y 4 V 1 V = 1 2 V S . A M N V S . A B D + V S . P M N V S . C B D = 1 2 . S M S D + S N S B 1 + S P S C = 3 x y 4 ⇒ x + y = 3 x y ⇒ y = x 3 x − 1 ∈ 0 ; 1 ⇒ x ∈ 1 2 ; 1 ⇒ V 1 V = 3 x 3 4 3 x − 1 = 3 4 f x .

Xét  f x = x 2 3 x − 1 với  x ∈ 1 2 ; 1

Xét hàm, suy ra  M a x 1 2 ; 1 f x = 1 2 ⇒ V 1 V ≤ 3 8 .

13 tháng 1 2017

Giả sử  S D → = m S M → , S B → = n S N →

Ta có  S A → + S C → = S B → + S D → = 2 S I →

Vì A , M , N , P  đồng phẳng nên tồn tại các số x;y sao cho  A P → = x A M → + y A N →

⇔ 1 2 A S → + A C → = x A S → + S M → + y A S → + S N →

⇔ 1 2 A S → + A S → + S B → + A S → + S D → = x A S → + S M → + y A S → + S N →

⇔ 3 2 A S → + 1 2 S B → + 1 2 S D → = x + y A S → + x m S M → + y n S N →

⇔ x + y = 3 2 x m = 1 2 y n = 1 2 ⇒ m + n = 3.

 Ta có:  V S . A N P V S . A B C = S N S B . S P S C ⇒ V S . A N P = S N S B . S P S C . V S . A B C = S N S B . 1 2 . V 2 1

V S . A M P V S . A D C = S M S D . S P S C ⇒ V S . A M P = S M S D . S P S C . V S . A D C = S M S D . 1 2 . V 2 2

Từ (1) và (2)  V 1 V 2 = 1 4 S B S B + S M S D = 1 4 1 n + 1 m ≥ 1 m + n = 1 3

23 tháng 12 2018



19 tháng 10 2018

Đáp án C

Giả sử  S D → = m . S M → ;    S B → = n . S N →   .

S A → + S C → = S B → + S D →

Do A; M; N; K đồng phẳng nên m + n = 3 .

V S . A K M V S . A B C = 1 2 .1. 1 m = 1 2 m ⇒ V S . A K M V = 1 4 m

Tương tự ta có  V S . A K N V = 1 4 n ⇒ V ' V = 1 4 . m + n m n = 3 4 m n ≥ 3 m + n 2 = 3 3 2 = 1 3   .

Dấu bằng xảy ra khi m = n = 1,5 .

27 tháng 4 2019

Đáp án A

29 tháng 5 2017

Đáp án C

Bài toán sử dụng bổ đề sau: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Mặt phẳng (P) bất kì cắt các cạnh SA, SB, SC, SD lần lượt tại các điểm A’, B’, C’, D’ với tỉ số

S A ' S A = x ; S B ' S B = y ; S C ' S C = z ; S D ' S D = t  thì ta có đẳng thức

1 x + 1 z = 1 y + 1 t  và tỉ số

V S . A ' B ' C ' D ' V S . A B C D = x y z t 4 1 x + 1 y + 1 z + 1 t

Áp dụng vào bài toán

đặt u = S M S B , v = S N S D  ta có

1 u + 1 v = S A S A ' + S C S I = 1 1 + 1 2 3 = 5 2 ≥ 2 u v ≥ 16 25 ⇒ V ' V = u v .1. 2 3 4 1 u + 1 v + 1 1 + 1 2 3 = 5 u v 6 ≥ 8 15

6 tháng 5 2018