K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2019

Giải bài 55 trang 80 SGK Toán 7 Tập 2 | Giải toán lớp 7

Hình 51

QUẢNG CÁO

Từ hình vẽ ta có:

+ DK là đường trung trực của AC ⇒ DA = DC.

+ DI là đường trung trực của AB ⇒ DA = DB.

+ Ta có : DI // AC (vì cùng ⏊ AB)

Mà DK ⏊ AC ⇒ DK ⏊ DI Giải bài 55 trang 80 SGK Toán 7 Tập 2 | Giải toán lớp 7

+ Xét ∆ADK và ∆CDK có:

AD = DC

AK = CK (gt)

DK chung

⇒ ∆ADK = ∆CDK (c.c.c)

Giải bài 55 trang 80 SGK Toán 7 Tập 2 | Giải toán lớp 7

QUẢNG CÁO

+ Xét ∆ADI và ∆BDI có :

AD = BD

AI = BI (gt)

DI chung

⇒ ∆ADI = ∆BDI (c.c.c)

Giải bài 55 trang 80 SGK Toán 7 Tập 2 | Giải toán lớp 7

Từ (1) và (2) suy ra

Giải bài 55 trang 80 SGK Toán 7 Tập 2 | Giải toán lớp 7

Vậy B, D, C thẳng hàng.

19 tháng 4 2017

Hướng dẫn:

Từ hình vẽ ta có:

DK là trung trực của Ac, DI là đường trung trực của AB. Do đó ∆ADK = ∆CDK (c.c.c)

=> ˆADK=ˆCDKADK^=CDK^

hay DK là phân giác ˆADCADC^

=> ˆADKADK^ = 1212ˆADCADC^

∆ADI = ∆BDI (c.c.c)

=> ˆADI=ˆBDIADI^=BDI^

=> DI là phân giác ˆADBADB^

=> ˆADIADI^ = 1212 ˆADBADB^

Vì AC // DI ( cùng vuông góc với AB) mà DK ⊥ AC

=> DK ⊥ DI

hay ˆADKADK^ + ˆADIADI^ = 900

Do đó 1212ˆADCADC^ + 1212 ˆADBADB^ = 900

=> ˆADCADC^ + ˆADBADB^ = 1800

19 tháng 4 2017

Từ hình vẽ ta có:

DK là trung trực của Ac, DI là đường trung trực của AB. Do đó ∆ADK = ∆CDK (c.c.c)

=> ˆADK=ˆCDKADK^=CDK^

hay DK là phân giác ˆADCADC^

=> ˆADKADK^ = 1212ˆADCADC^

∆ADI = ∆BDI (c.c.c)

=> ˆADI=ˆBDIADI^=BDI^

=> DI là phân giác ˆADBADB^

=> ˆADIADI^ = 1212 ˆADBADB^

Vì AC // DI ( cùng vuông góc với AB) mà DK ⊥ AC

=> DK ⊥ DI

hay ˆADKADK^ + ˆADIADI^ = 900

Do đó 1212ˆADCADC^ + 1212 ˆADBADB^ = 900

=> ˆADCADC^ + ˆADBADB^ = 1800



13 tháng 12 2017

hjufyhijug 

28 tháng 2 2018

B A E M K C H

a) Bạn ghi câu a) không rõ ràng nên mình thay thế bằng ý kiến của mình nhé !

CMR : \(\Delta ABE=\Delta HBE\)

Xét \(\Delta ABE,\Delta HBE\) có :

\(BA=BH\left(gt\right)\)

\(\widehat{ABE}=\widehat{HBE}\) (BE là tia phân giác của \(\widehat{B}\) )

\(BE:chung\)

=> \(\Delta ABE=\Delta HBE\left(c.g.c\right)\)

b) Gọi \(AH\cap BE=\left\{O\right\};O\in BE\)

Xét \(\Delta ABO,\Delta HBO\) có :

\(AB=BH\left(gt\right)\)

\(\widehat{ABO}=\widehat{HBO}\) (BE là tia phân giác của \(\widehat{B}\) ; \(O\in BE\))

AO : Chung

=> \(\Delta ABO=\Delta HBO\left(c.g.c\right)\)

=> \(\widehat{BOA}=\widehat{BOH}\) (2 góc tương ứng)

Mà : \(\widehat{BOA}+\widehat{BOH}=180^o\left(Kềbù\right)\)

=> \(\widehat{BOA}=\widehat{BOH}=\dfrac{180^o}{2}=90^o\)

=> \(BO\perp AH\)

Hay : \(BE\perp AH\)

c) Ta chứng minh được : \(\Delta BKE=\Delta BCE\)

Suy ra : \(EK=EC\) (2 cạnh tương ứng)

d) Xét \(\Delta ABC\) có :

BE là tia phân giác của \(\widehat{ABC}\) (1)

Xét \(\Delta KEM,\Delta CEM\) có :

\(EK=EC\left(cmt\right)\)

\(EM:chung\)

\(KM=CM\) (M là trung điểm của KC)

=> \(\Delta KEM=\Delta CEM\left(c.c.c\right)\)

=> \(\widehat{MEK}=\widehat{MEC}\) (2 góc tương ứng)

=> EM là tia phân giác của \(\widehat{KEC}\) (2)

Từ (1) và (2) => \(BE\equiv ME\)

=> B, E, M thẳng hàng

=> đpcm.

4 tháng 3 2018

góc BKE và góc BCE bằng nhau theo trường hợp gì vậy bạn

 

23 tháng 12 2016

a) xét tam giác oam và tam giác obm có:

OA = OB ( GT )

AM = MB ( GT )

OM chung

=> tam giác oam = tam giác obm ( c.c.c)

b) ta có oam= obm( theo a )

=> oam = obm (2 góc t.ư)

=> oam+ obm= 180°(2 góc kề bù)

=> oam= obm = 180° : 2 = 90°

=> om vuông góc ab

c) xét tam giác amd và tam giác bmd có

am= bm(gt)

da=db(gt)

md chung

=> tam giác amd= tam giác bmd(c.c.c)

=> dam= dbm( 2 góc t.ư)

=> dam+dbm=180° (2góc kề bù)

=> dam= dbm= 180° : 2 = 90°

=> md vuông góc ab

Mà om vuông góc ab ( theo b )

md vuông góc ab(cmt)

Mà M thuộc od => M,O,D thẳng hàng

Bn tự vẽ hình hộ mk nhé!

24 tháng 12 2016

thank bạn nha haha

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

25 tháng 12 2018

???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

25 tháng 12 2018

a, xét tam giác aec và tam giác aed có

ae chung

ec=ed(gt)

ac=ad(gt)

=>tam giác aec = tam giác aed(ccc)

b. từ cma ta có tam giác aec = tam giác aed

=>góc cae=góc dac(2 góc tg ứng)

xét tam giác cai và tam giác dai có

ca=da(gt)

góc cae=góc dac(cmt)

ai chung

=>tam giác cai =tam giác dai(cgc)

=>ci=di(2 cạnh tg ứng)