Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hoành độ giao điểm là nghiệm của pt
\(x^3-3mx^2+3\left(2m-1\right)x+1=2mx-4m+3\Leftrightarrow x^3-3mx^2+4mx-3x-2+4m=0\Leftrightarrow x^3-3x-2-m\left(3x^2-4x+4\right)=0\)
giải hệ pt ta có \(C_m\) luôn đi qua điểm A là nghiệm của hệ pt sau
\(\begin{cases}3x^2-4x+4=0\\x^3-3x-2=0\end{cases}\)
ta đc điều phải cm
Đáp án B.
Có y ' = − 4 x 3 + 4 m x . y ' = 0 ⇔ x = 0 x = m c = − m (Có 3 cực trị nên m > 0 ).
3 điểm cực trị là A 0 ; − 1 ; B m ; m 2 − 1 ; C − m ; m 2 − 1 . O là tâm đường tròn ngoại tiếp
⇔ O A = O B = O C ⇔ 1 = m + m 2 − 1 2 ⇔ m 4 − 2 m 2 + m = 0 ⇔ m m − 1 m 2 + m − 1 = 0 ⇔ m = 1 m = − 1 + 5 2 (Ta chỉ lấy m > 0 .)
ta có \(y=\frac{3\left(x+1\right)}{x-2}=3+\frac{9}{x-2}\) để các điểm trên C có tọa độ nguyên thì (x,y) nguyên
suy ra (x-2) là ước của 9
mà \(Ư\left\{9\right\}=\left\{\pm9;\pm3;\pm1\right\}\)
TH1: x-2=-9 suy ra x=-7 suy ra y=3-1=2
th2: x-2=9 suy ra x=11 suy ra y=3+1=4
th3:x-2=-3 suy ra x=-2 suy ra y=3-3=0
th4: x-2=3 suy ra x=5 suy ra y=3+3=6
th5:x-2=1 suy ra x=3 suy ra y=3+9=12
th6: x-2=-1 suy ra x=1 suy ra y=3-9=-6
kết luận....
hoành độ giao điểm là nghiệm của pt
\(x^3+3x^2+mx+1=1\Leftrightarrow x\left(x^2+3x+m\right)=0\)
\(x=0;x^2+3x+m=0\)(*)
để (C) cắt y=1 tại 3 điểm phân biệt thì pt (*) có 2 nghiệm phân biệt khác 0
\(\Delta=3^2-4m>0\) và \(0+m.0+m\ne0\Leftrightarrow m\ne0\)
từ pt (*) ta suy ra đc hoành độ của D, E là nghiệm của (*)
ta tính \(y'=3x^2+6x+m\)
vì tiếp tuyến tại Dvà E vuông góc
suy ra \(y'\left(x_D\right).y'\left(x_E\right)=-1\)
giải pt đối chiếu với đk suy ra đc đk của m
Đáp án A.
Phương trình hoành độ giao điểm của c m và d : x 3 - 3 x 2 + ( m + 1 ) x + 1 = x + 1
⇔ x 3 - 3 x 2 + m x = 0 ⇔ x = 0 x 2 - 3 x + m = 0 *
Để c m cắt d tại ba điểm phân biệt P ( 0 ; 1 ) , M , N thì phương trình (*) phải có hai nghiệm phân biệt x 1 , x 2 khác 0 ⇔ 0 2 - 3 . 0 + m ≢ 0 ∆ = ( - 3 ) 2 - 4 m > 0 ⇔ m ≢ 0 m < 9 4
Giả sử M ( x 1 ; x 1 + 1 ) vàvới N ( x 2 ; x 2 + 1 ) là nghiệm của phương trình (*).
Theo định lý Vi-ét ta có x 1 + x 2 = 3 x 1 x 2 = m
Để tam giác OMN vuông tại O thì O M → . O N → = 0 ⇔ x 1 x 2 + ( x 1 + 1 ) ( x 2 + 1 ) = 0
⇔ 2 x 1 x 2 + ( x 1 + x 2 ) + 1 = 0 ⇔ 2 m + 4 = 0 ⇔ m = - 2 (thỏa mãn)
vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)
vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3
ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2
vậy ta tìm đc a và b