Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt t = sin x ∈ ( 0 ; 1 ] , ∀ x ∈ ( 0 ; π ) Phương trình trở thành: f(t)=m(1)
Ta cần tìm m để (1) có nghiệm thuộc khoảng ( 0 ; 1 ] ⇔ - 4 ≤ m < - 2
Chọn đáp án C.
Đặt phương trình trở thành f(t)=f(m)(1)
Với mỗi t ∈ - 1 ; 3 cho ta duy nhất một nghiệm x ∈ - π 2 ; π 2
Vậy ta cần tìm m để (1) có đúng ba nghiệm
Chọn đáp án B.
Ta thấy ứng với mỗi nghiệm t cho ta duy nhất một nghiệm x thuộc - π 2 ; π 2
Do đó yêu cầu bài toán ⇔ f(t) = f(m) có đúng nghiệm thuộc [-1;3]