K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7/  Em sửa lại đề ạ 

Cho hai số thực dương a, b thỏa mãn a+b=4ab

Chứng minh rằng  \(\frac{a}{4b^2+1}+\frac{b}{4a^2+1}\ge\frac{1}{2}\)

Đổi biến \(\left(a,b\right)\rightarrow\left(\frac{1}{x},\frac{1}{y}\right)\)

Từ giả thiết => x+y=4

Ta có: BĐT cần CM tương đương với:

\(\frac{\frac{1}{x}}{\frac{4}{y^2}+1}+\frac{\frac{1}{y}}{\frac{4}{x^2}+1}\ge\frac{1}{2}\)\(\Leftrightarrow\frac{y^2}{x\left(4+y^2\right)}+\frac{x^2}{y\left(4+x^2\right)}\ge\frac{1}{2}\left(1\right)\)

Áp dụng BĐT Schwarz, ta có:
\(\frac{x^2}{y\left(4+x^2\right)}\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)+xy^2+x^2y}=\frac{16}{16+xy^2+x^2y}\)

Ta chỉ cần chứng minh:

\(xy^2+x^2y\le16\Leftrightarrow xy^2+x^2y\le\frac{1}{4}\left(x+y\right)^3\)

\(\Leftrightarrow xy^2+x^2y\le x^3+y^3\)(luôn đúng)

Do đó (1) đúng. BĐT được chứng minh. Dấu "=" xảy ra khi x=y=2⇔a=b=\(\frac{1}{2}\)

6. (chuyên Hòa Bình)

Cho các số dương x, y, z thỏa mãn: xy+zx+4yz=32

Tìm giá trị nhỏ nhất của\(P=x^2+16y^2+16z^2\)

Áp dụng bất đẳng thức Cauchy cho  ba số dương  x,y,z ta có

\(\hept{\begin{cases}8y^2+\frac{1}{2}x^2\ge2\sqrt{8y^2.\frac{1}{2}x^2}=4xy\\8z^2+\frac{1}{2}x^2\ge2\sqrt{8z^2.\frac{1}{2}x^2}=4xz\\8y^2+8z^2\ge2\sqrt{8y^2.8z^2}=16yz\end{cases}}\)

Cộng từng vế của ba bđt trên ta có

\(P\ge4\left(xy+xz+4yz\right)=4.32=128\)

10 tháng 4 2016

vì 3n^2 chia hết cho 3 nên để A chia hết cho 3 thì ta CM 

n^3+2n=n*(n*n+2) vì n là số nguyên nên n có dạng 3k; 3k+1;3k+2(k thuộc Z)

nếu n=3k thì n*(n*n+2) luôn luôn chia hết cho 3

nếu n=3k+1 thì n*n=(3k+1)*(3k+1)=9k^2+3k+3k+1 chia 3 dư 1 nên n*n+2 luôn luôn chia hết cho 3

nếu n=3k+2 thì n*n=(3k+2)*(3k+2)=9k^2+6k+6k+4 chia 3 dư 1 nên n*n+2 luôn luôn chia hết cho 3

vậy biểu thức trên luôn luôn chia hết cho 3 với mọi n thuộcZ

10 tháng 4 2016

câu b)để A chia hết cho 15 thì n^3+3n^2+2n phải chia hết cho 3;5(vì ƯCLN(3;5)=1)

Mà theo câu a thì A luôn luôn chia hết cho 3 với n thuộc Z

nên ta chỉ cần tìm giá trị của n để A chia hết cho5

để A chia hết cho 5 thì n^3 phải chia hết cho 5;3n^2 phải chia hết cho 5;2n phải chia hết cho 5

                                   nên n phải chia hết cho 5(vì ƯCLN(3;5)=1;ƯCLN(2;5)=1 nên n^3;n^2;n phải chia hết cho 5 nên ta suy ra n phải chia hết cho 5)

mà 1<n<10 nên n=5(n là số nguyên dương)

vậy giá trị của n thỏa mãn đề bài là 5

 

17 tháng 6 2019

15.

Ta  có \(a+b+c+ab+bc+ac=6\)

Mà \(ab+bc+ac\le\left(a+b+c\right)^2\)

=> \(\left(a+b+c\right)^2+\left(a+b+c\right)-6\ge0\)

=> \(a+b+c\ge3\)

\(A=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac}\ge a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2\ge3\)(ĐPCM)

17 tháng 6 2019

Bài 18, Đặt \(\left(a^2-bc;b^2-ca;c^2-ab\right)\rightarrow\left(x;y;z\right)\) thì bđt trở thành

\(x^3+y^3+z^3\ge3xyz\)

\(\Leftrightarrow x^3+y^3+z^3-3xyz\ge0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\ge0\)

\(\Leftrightarrow\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\ge0\)

Vì \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)nên ta đi chứng minh \(x+y+z\ge0\)

Thật vậy \(x+y+z=a^2-bc+b^2-ca+c^2-ab\)

                                     \(=\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)(đúng)

Tóm lại bđt được chứng minh

Dấu "=": tại a=b=c

3 tháng 4 2016

b,(*)chứng minh a=-3b:

xét a-b=2(a+b)

=>a-b=2a+2b

=>-b-2b=2a-a

=>-3b=a (đpcm) 

(*) tính a/b :

Từ -3b=a=>a/b=-3

(*)tính a và b:

Ta có : a-b=a/b=-3

             và 2(a+b)=a/b=-3

hệ pt<=>a-b=-3                   

        và 2(a+b)=-3    

       <=>a-b=-3    (1)

        và a+b=-1,5   (2)

Lấy (1)+(2),vế theo vế ta đc:

(a-b)+(a+b)=-3+(-1,5)

=>a-b+a+b=-4,5

=>2a=-4,5=>a=-2,25

Mà a-b=-3=>b=0,75

Vậy (a;b)=(-2,25;0,75)

 

 

 

3 tháng 4 2016

c) vì (x-y2+z)2 >= 0 với mọi x;y;z

      (y-2)2 >= 0 với mọi y

     (z+3)2 >= 0 với mọi z

=>(x-y2+z)2+(y-2)2+(z+3)2 >= 0 với mọi x;y;z

Mà theo đề: (x-y2+z)2+(y-2)2+(z+3)2=0

=>(x-y2+z)2=(y-2)2=(z+3)2=0

+)(y-2)2=0=>y=2

+)(z+3)2=0=>z=-3

Thay y=2;z=-3 vào (x-y2+z)2=0=>x-22+(-3)2=0=>x=-5

Vậy (x;y;z)=(-5;2;-3)

29 tháng 7 2016

cho 2014=2013+1 thay vào ta có:\(B=x^{2013}-\left(2013+1\right)x^{2012}+\left(2013+1\right)x^{2011}-...-\left(2013+1\right)x^2+\left(2013+1\right)x-1\)

\(=x^{2013}-\left(x+1\right)x^{2012}+\left(x+1\right)x^{2011}-...-\left(x+1\right)x^2+\left(x+1\right)x-1\)

\(=x^{2013}-x^{2013}-x^{2012}+x^{2012}+x^{2011}-...-x^3-x^2+x^2+x-1\)

\(=x-1=2013-1=2012\)

29 tháng 3 2016

nhiều quáhuhu

a)A=x+3/x-2

A=x-2+5/x-2

A=1+5/x-2

vì 1 thuộc Z nên để A thuộc Z thì 5 phải chia hết cho x-2

x-2 thuộc ước của 5

x-2 thuộc -5;-1;1;5

x = -3;1;3 hoặc 7

giá trị các biểu thức theo giá trị của x như trên và lần lượt là 0;-4;6;2

b)để B= 1-2x/2+x thuộc Z thì

1-2x phải chia hết cho 2+x

nên 1-2x-4+4  phải chia hết cho x+2

1-(2x+4)+4  phải chia hết cho x+2

1+4-[2(x+2]  phải chia hết cho x+2

5 -[2(x+2] phải chia hết cho x+2

vì [2(x+2] chia hết cho x+2 nên 5 phải chia hết cho x+2

suy ra x+2 thuộc ước của 5 

  x+2 thuộc -5;-1;1;5

x=-7;-3;-1;3

giá trị các biểu thức theo giá trị của x như trên và lần lượt là -3;-7;3;-1

19 tháng 4 2017

bạn làm sai 1 chút ở đầu

23 tháng 2 2016

\(M>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=\frac{x+y+z+t}{x+y+z+t}=1\)

Mà \(\frac{a}{b}<1\) thì \(\frac{a}{b}<\frac{a+m}{b+m}\) ; \(m\in N\)*

Do đó \(M<\frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+x}{x+y+z+t}+\frac{t+y}{x+y+z+t}=\frac{2\left(x+y+z+t\right)}{x+y+z+t}=2\)

Vậy 1 < M < 2 nên M không phải là số tự nhiên/

11 tháng 3 2016

Xét tử \(\left|4-x\right|+\left|x+2\right|\ge0\)

Xét mẫu \(\left|x+5\right|+\left|x-3\right|\ge0\)

Do đó \(\frac{\left|4-x\right|+\left|x+2\right|}{\left|x+5\right|+\left|x-3\right|}\ge0\)

Nhưng đề bài cho \(\frac{\left|4-x\right|+\left|x+2\right|}{\left|x+5\right|+\left|x-3\right|}=-\frac{1}{2}<0\) nên không có giá trị nào của x thỏa mãn.