Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Các phép biến hình lần lượt là: Phép tịnh tiến theo véc tơ \(\overrightarrow{0}\); Phép quay tâm A góc \(\phi\) bất kì; phép vị tự tâm A tỉ số k bất kì.
b)
Phép tịnh tiến theo véc tơ \(\overrightarrow{AB}\); Phép đối xứng tâm qua trung điểm của AB; Phép quay tâm I là trung điểm của AB và góc \(\phi=90^o\); Phép vị tự tâm A tỉ số \(k=AB\).
c)
Phép tịnh tiến theo một véc tơ bất kì; Phép đối xứng tâm có tâm đối xứng nằm trên đường thẳng d; Phép quay bất kì; Phép vị tự có tâm nằm trên đường thẳng d.
Đáp án A
Các phát biểuđúng: 2, 3,5,6
1. Phép tịnh tiến biến đường thẳng thành đường thẳng song song hoặc trùng với nó
4. Phép đối xứng tâm biến đường thẳng thành đường thằng song song hoặc trùng với nó
7. Phép biến hình F’ có được nhờ thực hiệnphép vị tựkhông phải là phép dời hình
Đáp án A
Nhữngphát biểu sai: d; f; i
d) Qua phép đối xứng trục, đoạn thẳng AB biến thành đoạn thẳng song song và bằng nó hoặc là chính nó.
f) Qua phép đối xứng trục Đa, tam giác có một đỉnh nằm trên a sẽ biến thành chính nó ( chỉ trong trường hợp tam giác đều hoặc tam giác cân cóđỉnh nằm trên trục đối xứng)
i) Hình chữ nhật có 2 trục đối xứng
Đáp án C
Các phép biến hình luôn biến 1 đường thẳng thành 1 đường thẳng song song hoặc trùng với nó là: Tịnh tiến, đối xứng tâm, phép vị tự.
Giao của d và d' với Ox lần lượt là \(A\left(-2;0\right)\) và \(A'\left(8;0\right)\). Phép đối xứng qua tâm cần tìm biến A thành A' nên tâm đối xứng của nó là \(I=\left(3;0\right)\)
Đáp án D
Phát biểuđúng: a , c, e, f, g, i, j, l
b. Phép biến hình biến đường tròn thành đường tròn có bán kính bằng nó có thể là phép tịnh tiến
d. Phép tịnh tiến biến đường tròn thành đường tròn có cùng bán kính
h. Với bất kì 2 điểm A, B và ảnh A’, B’ của chúng qua 1 phép dời hình, ta luôn có AB = A’B’.
k. Nếu phép dời hình biến điểm A thành điểm B thì nó cũng biến điểm B thành A (phát biểu không đúng với phép tịnh tiến)
Gọi A' và d' theo thứ tự là ảnh của A và d qua phép biến hình trên
a) A' = (-1+2; 2+1) = (1;3), d // d', nên d có phương trình : 3x +y + C = 0. Vì A thuộc d, nên A' thuộc d', do đó 3.1 +3 + C = 0. Suy ra C=-6. Do đó phương trình của d' là 3x+y-6=0
b) A (-1;2) và B(0;-1) thuộc d. Ảnh của A và B qua phép đối xứng qua trục Oy tương ứng là A'(1;2) và B'(0;-1). Vậy d' là đường thẳng A'B' có phương trình :
=
hay 3x - y - 1 =0
c) A'=( 1;-2) , d' có phương trình 3x + y -1 =0
d) Qua phép quay tâm O góc , A biến thành A'( -2; -1), B biến thành B'(1;0). Vậy d' là đường thẳng A'B' có phương trình
=
hay x - 3y + 1 = 0
Gọi A' và d' theo thứ tự là ảnh của A và d qua phép biến hình trên
a) A' = (-1+2; 2+1) = (1;3), d // d', nên d có phương trình : 3x +y + C = 0. Vì A thuộc d, nên A' thuộc d', do đó 3.1 +3 + C = 0. Suy ra C=-6. Do đó phương trình của d' là 3x+y-6=0
b) A (-1;2) và B(0;-1) thuộc d. Ảnh của A và B qua phép đối xứng qua trục Oy tương ứng là A'(1;2) và B'(0;-1). Vậy d' là đường thẳng A'B' có phương trình :
=
hay 3x - y - 1 =0
c) A'=( 1;-2) , d' có phương trình 3x + y -1 =0
d) Qua phép quay tâm O góc , A biến thành A'( -2; -1), B biến thành B'(1;0). Vậy d' là đường thẳng A'B' có phương trình
=
hay x - 3y + 1 = 0
Đáp án C
Những phát biểuđúng: 1; 4; 5; 6; 7; 8; 9; 10; 11; 13; 14
2. Qua phép vị tự có tỉ số , đường tròn có tâm là tâm vị tự sẽ biến thành 1 đường tròn đồng tâm với đường tròn ban đầu và có bán kính = k. bán kính đường tròn ban đầu.
3. Qua phép vị tự có tỉ số đường tròn biến thành chính nó.
12. Phép vị tự với tỉ số k = biến tứ giác thành tứ giác bằng nó
Đáp án B
Những phát biểuđúng: 1;2;3;5;7
4. Phép quay Q(O;180 ° ) biến A thành M thì O thuộc đường tròn đường kính AM
6. Phép quay Q(O; α ) biến (O;R) thành (O;R)
a. Các phép biến một điểm A thành chính nó:
Phép đồng nhất:
- Phép tịnh tiến theo vectơ 0 .
- Phép quay tâm A, góc φ = 0º.
- Phép đối xứng tâm A.
- Phép vị tự tâm A, tỉ số k = 1.
- Ngoài ra còn có:
- Phép đối xứng trục mà trục đi qua A.
b. Các phép biến hình biến điểm A thành điểm B:
- Phép tịnh tiến theo vectơ AB .
- Phép đối xứng qua đường trung trực của đoạn thẳng AB.
- Phép đối xứng tâm qua trung điểm của AB.
- Phép quay mà tâm nằm trên đường trung trực của AB.
- Phép vị tự mà tâm là điểm chia trong hoặc chia ngoài đoạn thẳng AB theo tỉ số k.
c. Phép tịnh tiến theo vectơ v //d.
- Phép đối xứng trục là đường thẳng d’ ⊥ d.
- Phép đối xứng tâm là điểm A ∈ d.
- Phép quay tâm là điểm A ∈ d, góc quay φ =180º.
- Phép vị tự tâm là điểm I ∈ d.