K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2017

Giải bài 23 trang 76 SGK Toán 9 Tập 2 | Giải toán lớp 9

TH1: M nằm trong đường tròn.

Giải bài 23 trang 76 SGK Toán 9 Tập 2 | Giải toán lớp 9 là hai góc nội tiếp cùng chắn cung Giải bài 23 trang 76 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 23 trang 76 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇒ MA.MB = MC.MD

TH2: M nằm ngoài đường tròn.

Giải bài 23 trang 76 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 23 trang 76 SGK Toán 9 Tập 2 | Giải toán lớp 9

ΔMBC và ΔMDA có:

Giải bài 23 trang 76 SGK Toán 9 Tập 2 | Giải toán lớp 9

Kiến thức áp dụng

+ Góc nội tiếp chắn một cung có số đo bằng một nửa số đo của cung đó.

+ Hai góc nội tiếp chắn cùng một cung thì có số đo bằng nhau.

a) M ở bên trong đường tròn (hình a)

Xét hai tam giác MAB' và MA'B chúng có:

= ( đối đỉnh)

= (hai góc nội tiếp cùng chắn cung ).

Do đó ∆MAB' ~ ∆MA'B, suy ra:

= , do đó MA. MB = MB'. MA'

b) M ở bên ngoài đường tròn (hình b)

∆MAB' ~ ∆MA'B

M chung = (hai góc nội tiếp cùng chắn cung ).

Suy ra: =

hay MA. MB = MB'. MA'



23 tháng 11 2023

Xét (O) có

\(\widehat{ADC}\) là góc nội tiếp chắn cung AC

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{ADC}=\widehat{ABC}\)

=>\(\widehat{MDA}=\widehat{MBC}\)

Xét ΔMDA và ΔMBC có

\(\widehat{MDA}=\widehat{MBC}\)

\(\widehat{M}\) chung

Do đó: ΔMDA đồng dạng với ΔMBC

=>\(\dfrac{MD}{MB}=\dfrac{MA}{MC}\)

=>\(MD\cdot MC=MB\cdot MA\)

Bài 1: Cho nửa đường tròn (O) đường kính AB. Lấy điểm C trên đoạn AO, C khác A và O. Đường thẳng đi qua C vuông góc với AO cắt nửa đường tròn (O) tại D. M là điểm bất kì trên cung BD ( M khác B và D). Tiếp tuyến tại M của (O) cắt đường thẳng CD tại E. Gọi F là giao điểm của AM và CD.a/ CM bốn điểm B,C,F,M cùng nằm trên một đường tròn.b/ CM: EM = EFc/ Gọi I là tâm đường tròn ngoại tiếp...
Đọc tiếp

Bài 1: Cho nửa đường tròn (O) đường kính AB. Lấy điểm C trên đoạn AO, C khác A và O. Đường thẳng đi qua C vuông góc với AO cắt nửa đường tròn (O) tại D. M là điểm bất kì trên cung BD ( M khác B và D). Tiếp tuyến tại M của (O) cắt đường thẳng CD tại E. Gọi F là giao điểm của AM và CD.

a/ CM bốn điểm B,C,F,M cùng nằm trên một đường tròn.

b/ CM: EM = EF

c/ Gọi I là tâm đường tròn ngoại tiếp tam giác DMF. CM góc ABI có số đo không đổi khi M di động trên cung \(\widebat{BD}\)

Bài 2: Cho tam giác đều ABC nội tiếp trong đường tròn (O). Một đường thẳng d thay đổi đi qua A, cắt (O) tại điểm thứ hai là E, cắt hai tiêp tuyến kẻ từ B và C của đường tròn (O) lần lượt tại M và N sao cho A,M,N nằm ở cùng nửa mặt phẳng bờ BC. Gọi giao điểm của hai đường thẳng MC và BN tại F. CMR:

a/ Hai tam giác MBA và CAN dồng dạng và tích MB.CN không đổi.

b/ Tứ giác BMEF nội tiếp trong một đường tròn.

c/ Đường thẳng EF luôn đi qua một điểm cố định khi (d) thay đổi.

0

a: góc ACB=1/2*sđ cung AB=90 độ

=>ΔACN vuông cân tại C

góc ACN+góc AMN=180 độ

=>AMNC nội tiếp

b: AMNC nội tiếp

=>góc CNA=góc CMA=góc BMD

góc BNE=1/2(sđ cung BE-sđ cung AC)

góc DMB=1/2*(sđ cung BD-sđ cung AC)

=>sđ cung BD=sđ cung BE

=>B nằm trên trung trực của DE

Xét ΔADB và ΔAEB có

góc ADB=góc aEB

AB chung

DB=BE

=>ΔABD=ΔAEB

=>AD=AE
=>A nằm trên trung trực của DE

=>AB là trung trực của DE

=>DE vuông góc AB

10 tháng 10 2017

Đường tròn c: Đường tròn qua B_1 với tâm O Đoạn thẳng i: Đoạn thẳng [F, A] Đoạn thẳng k: Đoạn thẳng [A, C] Đoạn thẳng l: Đoạn thẳng [A, E] Đoạn thẳng m: Đoạn thẳng [E, M] Đoạn thẳng n: Đoạn thẳng [D, F] Đoạn thẳng p: Đoạn thẳng [G, B] Đoạn thẳng q: Đoạn thẳng [E, C] O = (2.08, 1.84) O = (2.08, 1.84) O = (2.08, 1.84) A = (12.48, 2.58) A = (12.48, 2.58) A = (12.48, 2.58) Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm C: Giao điểm đường của c, f Điểm C: Giao điểm đường của c, f Điểm C: Giao điểm đường của c, f Điểm E: Giao điểm đường của c, g Điểm E: Giao điểm đường của c, g Điểm E: Giao điểm đường của c, g Điểm F: Giao điểm đường của c, h Điểm F: Giao điểm đường của c, h Điểm F: Giao điểm đường của c, h Điểm G: Giao điểm đường của c, i Điểm G: Giao điểm đường của c, i Điểm G: Giao điểm đường của c, i Điểm M: Giao điểm đường của f, j Điểm M: Giao điểm đường của f, j Điểm M: Giao điểm đường của f, j

a)  Do DF // AC nên \(\widehat{MAG}=\widehat{GFD}\)  (Hai góc so le trong) . 

Lại có \(\widehat{GFD}=\widehat{GED}\)   (Hai góc nội tiếp cùng chắn cung GD)

Nên \(\widehat{MAG}=\widehat{GED}\)

Xét tam giác AMG và tam giác EMA có:

\(\widehat{MAG}=\widehat{MEA}\) (cmt)

Góc M chung

Vậy nên \(\Delta AMG\sim\Delta EMA\left(g-g\right)\Rightarrow\frac{MA}{ME}=\frac{MG}{MA}\Rightarrow MA^2=MG.ME\) 

b) Do tứ giác ECBG nội tiếp nên \(\widehat{BCE}=\widehat{BGM}\) (Góc ngoài tại đỉnh đối của tứ giác nội tiếp)

Vậy xét tam giác MGB và MCE có:

\(\widehat{BGM}=\widehat{ECM}\left(cmt\right)\)

Góc M chung

Vậy nên \(\Delta MGB\sim\Delta MCE\left(g-g\right)\)

c) Theo câu a, ta có \(AM^2=MG.ME\)

Theo câu b, \(\Delta MGB\sim\Delta MCE\Rightarrow\frac{MG}{MC}=\frac{MB}{ME}\Rightarrow MG.ME=MB.MC\)

Vậy nên \(MA^2=MB.MC\)

Suy ra \(MA^2+MA.MC=MB.MC+MA.MC\)

\(\Leftrightarrow MA\left(MA+MC\right)=MC\left(MB+MA\right)\)

\(\Leftrightarrow MA.AC=MC.AB\)

\(\Leftrightarrow AB\left(AC-AM\right)=MA.AC\)

\(\Leftrightarrow AB.AC-AB.AM=AM.AC\)

\(\Leftrightarrow AB.AC=AM\left(AB+AC\right)\)

\(\Leftrightarrow\frac{1}{AM}=\frac{AB+AC}{AB.AC}\)

\(\Leftrightarrow\frac{1}{AM}=\frac{1}{AB}+\frac{1}{AC}\left(đpcm\right)\)

10 tháng 12 2019

ko biet