Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Gọi I là trung điểm AB khi đó \(I\left(-1;2\right)\) và \(\overrightarrow{MA}+\overrightarrow{MB}=2\overrightarrow{MI}\) với mọi M
Do đó \(M\in\Delta\) mà \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|\) nhỏ nhất khi và chỉ khi M là hình chiếu của I trên \(\Delta\)
Gọi \(\left(x;y\right)\) là tọa độ hình chiếu của I trên \(\Delta\). Khi đó ta có hệ phương trình :
\(\begin{cases}x+y+1=0\\\frac{x+1}{1}=\frac{y-2}{1}\end{cases}\) \(\Leftrightarrow\begin{cases}x+y+1=0\\x-y+3=0\end{cases}\)
Giải hệ thu được \(x=-2;y=1\) Vạy điểm \(M\in\Delta\) mà \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|\) nhỏ nhất là \(M\equiv I\left(-2;1\right)\)
b) gọi J là điểm thỏa mãn \(2\overrightarrow{JA}+3\overrightarrow{JB}\)=0 khi đó \(J\left(-\frac{8}{5};\frac{9}{5}\right)\) và với mọi điểm M của mặt phẳng đều có
\(2MA^2+3MB^2=2JA^2+3JB^2+5MJ^2\)
suy ra \(M\in\Delta\)mà \(2MA^2+3MB^2\)nhỏ nhất khi và chỉ khi M là hình chiếu của J trên\(\Delta\)
Gọi (x;y) là tọa độ hình chiếu của J trên \(\Delta\).khi đó ta có phương trình
\(\begin{cases}x+y+1=0\\x+\frac{8}{5}=y-\frac{9}{5}\end{cases}\)\(\Leftrightarrow\begin{cases}x+y+1=0\\x-y-\frac{17}{5}=0\end{cases}\)
Giải hệ thu được : \(x=\frac{5}{6};y=-\frac{11}{5}\)
Vậy điểm M cần tìm là : \(M\left(\frac{6}{5};\frac{-11}{5}\right)\)
Ta có: \(\frac{1}{a}+\frac{1}{b}=1\Leftrightarrow ab=a+b\ge2\sqrt{ab}\)
\(\Rightarrow\sqrt{ab}\ge2\Rightarrow ab\ge4\)
Tọa độ \(A\left(0;b\right)\) ; \(B\left(a;0\right)\)
\(S=\frac{1}{2}ab\ge\frac{1}{2}.4=2\)
Dấu "=" xảy ra khi \(a=b=2\Rightarrow T=10\)
bài 2)
xét \(2\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}-4\overrightarrow{OD}=2\left(\overrightarrow{OA}+\overrightarrow{OD}\right)+\left(\overrightarrow{OB}-\overrightarrow{OD}\right)+\left(\overrightarrow{OC}-\overrightarrow{OD}\right)\)
\(=2\overrightarrow{DA}+\overrightarrow{DB}+\overrightarrow{DC}=2\overrightarrow{DA}+2\overrightarrow{DM}\) ( Vì M là trung điểm của BC )
\(=2\left(\overrightarrow{DA}+\overrightarrow{DM}\right)=\overrightarrow{0}\) ( Vì D là trung điểm của AM )
=> đpcm
Câu 4:
\(\overrightarrow{AB}=\left(-6;-2\right)\)
\(\overrightarrow{AH}=\left(m+1;m+1\right)\)
Để A,B,H thẳng hàng thì \(\dfrac{m+1}{-6}=\dfrac{m+1}{-2}\)
=>1/-6=1/-2(loại)
a. Vì \(2-2.5+3=-5< 0\) và \(-4-2.5+3=-11< 0\) nên A, B cùng phía với đường thẳng \(\Delta\).
Gọi \(A'\left(x;y\right)\) là điểm đối xứng với A qua \(\Delta\), khi đó (x;y) là nghiệm của hệ :
\(\begin{cases}\frac{x-2}{1}=\frac{y-5}{-2}\\\frac{x-2}{1}-2.\frac{y+5}{2}+3=0\end{cases}\)
Giải hệ ta được : \(\left(x;y\right)=\left(4;1\right)\) suy ra \(\overrightarrow{A'B}=\left(-8;4\right)=4\left(-2;1\right)\)
Do đó đường thẳng A'B có phương trình tham số \(\begin{cases}x=4-2t\\y=1+t\end{cases}\)\(;t\in R\)
Suy ra điểm C cần tìm có tọa độ là nghiệm của hệ :
\(\begin{cases}x=4-2t\\y=1+t\\x-2y+3=0\end{cases}\)
Giải hệ ta có điểm C \(\left(\frac{3}{2};\frac{9}{4}\right)\)
b. Gọi I là trung điểm của AB. Khi đó\(I\left(-1;5\right)\) và \(\overrightarrow{CA}+\overrightarrow{CB}=2\overrightarrow{CI}\), với mọi C.
Vậy \(C\in\Delta\) : \(\left|\overrightarrow{CA}+\overrightarrow{CB}\right|\) bé nhất \(\Leftrightarrow\left|CI\right|\) bé nhất \(\Leftrightarrow C\) là hình chiếu của I trên \(\Delta\)
Nếu \(C\left(x;y\right)\) là hình chiếu của I trên \(\Delta\) thì (x;y) là nghiệm của hệ :
\(\begin{cases}\frac{x+1}{1}=\frac{y-5}{-2}\\x-2y+3=0\end{cases}\)
Giải hệ thu được : \(\left(x;y\right)=\left(\frac{3}{5};\frac{9}{5}\right)\) vậy \(C\left(\frac{3}{5};\frac{9}{5}\right)\)
Đường thẳng \(\Delta\) có vecto pháp tuyến \(\overrightarrow{n}=\left(1;-2\right)\) nên nhận \(\overrightarrow{u}=\left(2;1\right)\) làm vecto chỉ phương.
Từ đó để ý rằng đường thẳng \(\Delta\) cắt Ox tại \(M\left(-3;0\right)\) nên \(\Delta\) có phương trình dạng tham số :
\(\begin{cases}x=-3+2t\\y=t\end{cases}\) \(\left(t\in R\right)\)
a. Xét \(C\left(-3+2t;t\right)\in\Delta\), khi đó :
\(CA+CB=\sqrt{\left(5-2t\right)^2+\left(5-t\right)^2}+\sqrt{\left(2t+1\right)^2+\left(t-5\right)^2}\)
\(=\sqrt{5t^2-30t+50}+\sqrt{5t^2-6t+26}\)
\(=\sqrt{\left(\sqrt{5}t-3\sqrt{5}\right)^2}+\sqrt{\left(\frac{3}{\sqrt{5}}-\sqrt{5}t\right)^2+\frac{121}{5}}\)
\(\ge\sqrt{\left(\frac{3}{\sqrt{5}}-3\sqrt{5}\right)^2+\left(\sqrt{5}+\frac{11}{\sqrt{5}}\right)^2}=4\sqrt{5}\)
Dấu đẳng thức xảy ra khi và chỉ khi
\(\frac{\sqrt{5}t-3\sqrt{5}}{\frac{3}{\sqrt{5}}-\sqrt{5}t}=\frac{5}{11}\Leftrightarrow t=\frac{9}{4}\)
Từ đó tìm được : \(C\left(\frac{3}{2};\frac{9}{4}\right)\)
b. Với \(C\left(=3+2t;t\right)\in\Delta\) ta có \(\overrightarrow{CA}=\left(5-2t;5-t\right)\) và \(\overrightarrow{CB}=\left(-1-2t;5-t\right)\)
Suy ra : \(\overrightarrow{CA}+\overrightarrow{CB}=\left(4-4t;10-2t\right)\) và do đó :
\(\left|\overrightarrow{CA}+\overrightarrow{CB}\right|=\sqrt{\left(4-4t\right)^2+\left(10-2t\right)^2}=\sqrt{\left(2\sqrt{5}t-\frac{18}{\sqrt{5}}\right)^2+\frac{256}{5}}\ge\frac{16}{\sqrt{5}}\)
Dấu đẳng thức xảy ra khi và chỉ khi \(t=\frac{9}{5}\)
Do đó điểm C cần tìm là \(\left(\frac{3}{5};\frac{9}{5}\right)\)