K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2021

a) P(x) = 2x4 + x3 - 2x - 5x3 + 2x2 + x + 1

= 2x4 + (x3 - 5x3) + 2x2 + (x - 2x) + 1

= 2x4 - 4x3 + 2x2 - x + 1

b) P(0) = 2 . 04 - 4 . 03 + 2 . 02 - 0 + 1 = 1

P(1) = 2 . 14 - 4 . 13 + 2 . 12 - 1 + 1 = 0

c) P(-1) = 2 . (-1)4 - 4 . (-1)3 + 2 . (-1)2 - (-1) + 1 = 10

=> x = -1 không là nghiệm của đa thức P(x)

Ta có: P(1) = 0

=> x = 1 là nghiệm của đa thức P(x)

AH
Akai Haruma
Giáo viên
18 tháng 6 2021

Lời giải:
a.

$P(x)=2x^4+(x^3-5x^3)+2x^2+(-2x+x)+1$

$=2x^4-4x^3+2x^2-x+1$

b) 
$P(0)=2.0^4-4.0^3+2.0^2-0+1=1$

$P(1)=2-4+2-1+1=0$

c.

$P(1)=0$ (theo phần b) nên $x=1$ là nghiệm của đa thức $P(x)$

$P(-1)=2+4+2+1+1=10\neq 0$ nên $x=-1$ không là nghiệm của đa thức $P(x)$

1 tháng 5 2019

a) \(P\left(x\right)=3x^3-x^2-2x^4+3+2x^3+x+3x^4-x^2-2x^4+3+2x^3+x+3x^4\)

 \(=2x^4+7x^3-2x^2+2x+6\)

\(Q\left(x\right)=-x^4+x^2-4x^3-2+2x^2-x-x^3-x^4+x^2-4x^3-2+2x^2-x-x^3\)

\(=-2x^4-10x^3+6x^2-2x-4\)

b) \(P\left(x\right)+Q\left(x\right)=2x^4+7x^3-2x^2+2x+6-2x^4-10x^3+6x^2-2x-4\)

                                      \(=-3x^3+4x^2+2\)

21 tháng 6 2020

a. 

\(P(x)=3x^3-x^2-2x^4+3+2x^3+x+3x^4\)

\(=(-2x^4+3x^4)+(3x^3+2x^3)-x^2+x+3\)

\(=x^4+5x^3-x^2+x+3\)

\(Q(x)=-x^4+x^2-4x^3-2+2x^2-x-x^3\)

\(=-x^4+(-4x^3-x^3)+(x^2+2x^2)-x-2\)

\(=-x^4-5x^3+3x^2-x-2\)

b. 

\(P(x)+Q(x)=(x^4+5x^3-x^2+x+3)+(-x^4-5x^3+3x^2-x-2)\)

\(=(x^4-x^4)+(5x^3-5x^3)+(-x^2+3x^2)+(x-x)+(3-2)\)

\(=2x^2+1\)

c.\(H(x)=Q(x)+P(x)\)
\(\Rightarrow H(x)=2x^2+1=0\)

\(\Rightarrow2x^2+1=0\)

     \(2x^2\)      \(=-1\)

         \(x^2\)      \(=\frac{-1}{2}\)  

mà \(x^2\ge0\)

\(\Rightarrow\)Đa thức \(H(x)=P(x)+Q(x)\)ko có nghiệm

học tốt

Nhớ kết bạn với mình đó

18 tháng 3 2022

Thu gọn và sắp xếp các hạng tử của đa thức theo lũy thừa giảm dần của biến:                        P(x)=x3+2x2+2

P(1)=13+2.12+2=1+2+2=5

P(-1)=(-1)3+2.(-1)2+2=(-1)+2+2=3

1) 3x4 + 2x2 - 2x2 + 2x - 5 = 3x4 + 2x - 5

2) P(-1) = 3.(-1)4 + 2.(-1) - 5 = 3 - 2 - 5 = 0

P (3) = 3.34 + 2.3 - 5 = 243 + 6 - 5 = 244

2 tháng 5 2016

\(P\left(x\right)=3x^2-5x^2+2x-x^2+4-x^4-\frac{1}{2}+x-2x\)

            =\(\left(3x^2-5x^2-x^2\right)-x^4+\left(2x+x-2x\right)+\left(4-\frac{1}{2}\right)\)

            =\(-3x^2-x^4+x+\frac{7}{2}\)

giảm ->  =\(-x^4-3x^2+x+\frac{7}{2}\)

b)\(P\left(1\right)=-1^4-3.1^2+1+\frac{7}{2}\)

               =\(-1-3.1+1+\frac{7}{2}\)

               =\(-1-3+1+\frac{7}{2}\)

               =\(\frac{1}{2}\)

\(P\left(\frac{1}{2}\right)=-\frac{1}{2}^4-3.\frac{1}{2}^2+\frac{1}{2}+\frac{7}{2}\)

              =\(-\frac{1}{16}-3.-\frac{1}{4}+\frac{1}{2}+\frac{7}{2}\)

              =\(-\frac{1}{16}-\left(-\frac{3}{4}\right)+\frac{1}{2}+\frac{7}{2}\)

             =\(\frac{75}{16}\)

a: \(A=-5x^3+9x^3-2x^2-2x^2+x-x+1\)

\(=4x^3-4x^2+1\)

\(B=-4x^3+2x^3-2x^2+2x^2+6x-9x-2\)

\(=-2x^3-3x-2\)

\(C=x^3-6x^2+2x-4\)

b: \(A\left(x\right)+B\left(x\right)-C\left(x\right)\)

\(=4x^3-4x^2+1-2x^3-3x-2+x^3-6x^2+2x-4\)

\(=3x^3-10x^2-x-4\)

9 tháng 5 2022

P(x) = \(-x^4-5x^3-6x^2+5x-1\)

Q(x) = \(x^4+5x^3+6x^2-2x+3\)

M(x) = P(x) + Q(x)

    \(-x^4-5x^3-6x^2+5x-1\)

+

       \(x^4+5x^3+6x^2-2x+3\)

     ------------------------------------

                                    \(3x+2\)

Vậy : M(x) = 3x + 2

Nghiệm của M(x) : 3x + 2 = 0

                               3x       = -2

                                 x       = \(-\dfrac{2}{3}\) 

a) \(P\left(x\right)=x^4-5x^3-1-6x^2+5x-2x^4\)

     \(P\left(x\right)=\left(x^4-2x^4\right)-5x^3-1-6x^2+5x\)

     \(P\left(x\right)=-x^4-5x^3-1-6x^2+5x\)

     \(P\left(x\right)=-x^4-5x^3-6x^2+5x-1\)

 

     \(Q\left(x\right)=3x^4+6x^2+5x^3+3-2x^4-2x\)

     \(Q\left(x\right)=\left(3x^4-2x^4\right)+6x^2+5x^3+3-2x\)

     \(Q\left(x\right)=x^4+6x^2+5x^3+3-2x\)

     \(Q\left(x\right)=x^4+5x^3+6x^2-2x+3\)

b) Ta có \(M\left(x\right)=P\left(x\right)+Q\left(x\right)\)

        \(\begin{matrix}\Rightarrow P\left(x\right)=-x^4-5x^3-6x^2+5x-1\\Q\left(x\right)=x^4+5x^3+6x^2-2x+3\\\overline{P\left(x\right)+Q\left(x\right)=0+0+0+3x+2}\end{matrix}\)

Vậy \(M\left(x\right)=3x+2\)

Cho \(M\left(x\right)=0\)

hay \(3x+2=0\)

       \(3x\)       \(=0-2\)

       \(3x\)        \(=-2\)

          \(x\)        \(=-2:3\)

          \(x\)         \(=\dfrac{-2}{3}\)

Vậy \(x=\dfrac{-2}{3}\) là nghiệm của đa thức \(M\left(x\right)\)