K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2018

Đáp án A

Sử dụng BĐT buhinhacopski ta có

x − 2 + y + 3 2 ≤ 1 + 1 x − 2 + y + 3 = 2 x + y + 2 .

Tức là ta có  x + y + 1 2 ≤ 4 2 x + y + 2   . Đặt  t = x + y   . Chú ý rằng  t ≥ − 1   .

Ta có

t + 1 2 ≤ 8 t + 8 ⇔ t 2 − 6 t − 7 ≤ 0 ⇔ − 1 ≤ t ≤ 7.  

Vậy max t = 7  xảy ra khi   x − 2 = y + 3 x + y = 7 ⇔ x = 6 y = 1 .

7/  Em sửa lại đề ạ 

Cho hai số thực dương a, b thỏa mãn a+b=4ab

Chứng minh rằng  \(\frac{a}{4b^2+1}+\frac{b}{4a^2+1}\ge\frac{1}{2}\)

Đổi biến \(\left(a,b\right)\rightarrow\left(\frac{1}{x},\frac{1}{y}\right)\)

Từ giả thiết => x+y=4

Ta có: BĐT cần CM tương đương với:

\(\frac{\frac{1}{x}}{\frac{4}{y^2}+1}+\frac{\frac{1}{y}}{\frac{4}{x^2}+1}\ge\frac{1}{2}\)\(\Leftrightarrow\frac{y^2}{x\left(4+y^2\right)}+\frac{x^2}{y\left(4+x^2\right)}\ge\frac{1}{2}\left(1\right)\)

Áp dụng BĐT Schwarz, ta có:
\(\frac{x^2}{y\left(4+x^2\right)}\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)+xy^2+x^2y}=\frac{16}{16+xy^2+x^2y}\)

Ta chỉ cần chứng minh:

\(xy^2+x^2y\le16\Leftrightarrow xy^2+x^2y\le\frac{1}{4}\left(x+y\right)^3\)

\(\Leftrightarrow xy^2+x^2y\le x^3+y^3\)(luôn đúng)

Do đó (1) đúng. BĐT được chứng minh. Dấu "=" xảy ra khi x=y=2⇔a=b=\(\frac{1}{2}\)

6. (chuyên Hòa Bình)

Cho các số dương x, y, z thỏa mãn: xy+zx+4yz=32

Tìm giá trị nhỏ nhất của\(P=x^2+16y^2+16z^2\)

Áp dụng bất đẳng thức Cauchy cho  ba số dương  x,y,z ta có

\(\hept{\begin{cases}8y^2+\frac{1}{2}x^2\ge2\sqrt{8y^2.\frac{1}{2}x^2}=4xy\\8z^2+\frac{1}{2}x^2\ge2\sqrt{8z^2.\frac{1}{2}x^2}=4xz\\8y^2+8z^2\ge2\sqrt{8y^2.8z^2}=16yz\end{cases}}\)

Cộng từng vế của ba bđt trên ta có

\(P\ge4\left(xy+xz+4yz\right)=4.32=128\)

26 tháng 4 2016

phải (-3)^y chứ

14 tháng 8 2018

Ta có: \(2^{x+1}.\left(-3\right)^y=12^x\)

\(\Rightarrow2^{x+1}.\left(-3\right)^y=\left(3.4\right)^x\)

\(\Rightarrow2^{x+1}.\left(-3\right)^y=3^x.4^x\)

\(\Rightarrow2^{x+1}.\left(-3\right)^y=3^x.2^{2x}\)

\(\Rightarrow2^{x+1}.\left(-1\right)^y.3^y=3^x.2^{2x}\)

\(\Rightarrow\left[{}\begin{matrix}x+1=2x\\x=y\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=y=1\end{matrix}\right.\)

Vậy x=1 , y=1

15 tháng 5 2017

Theo hệ quả của bất đẳng thức Cauchy - Schwarz

\(\Rightarrow x^2+y^2+z^2\ge xy+yz+xz\)

\(x^2+y^2+z^2\le3\)

\(\Rightarrow xy+yz+xz\le3\)

Ta có \(P=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\)

Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức

\(\Rightarrow P\ge\dfrac{\left(1+1+1\right)^2}{xy+1+yz+1+xz+1}=\dfrac{9}{xy+yz+xz+3}\) (1)

Ta có \(xy+yz+xz\le3\)

\(\Rightarrow xy+yz+xz+3\le6\)

\(\Rightarrow\dfrac{9}{xy+yz+xz+3}\ge\dfrac{9}{6}=\dfrac{3}{2}\) (2)

Từ (1) và (2)

\(\Rightarrow P\ge\dfrac{3}{2}\)

Vậy \(P_{min}=\dfrac{3}{2}\)

Dấu " = " xảy ra khi \(x=y=z=1\)

2) Ta có:

\(B=x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)

\(=x^4+x^3y-2x^3+x^3y+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)

\(=\left(x^4+x^3y-2x^3\right)+\left(x^3y+x^2y^2-2x^2y\right)-\left[x\left(x+y\right)-2x\right]+3\)

Do \(x+y-2=0\Rightarrow x+y=2\)

\(\Rightarrow B=\left(x^4+x^3y-2x^3\right)+\left(x^3y+x^2y^2-2x^2y\right)-\left[2x-2x\right]+3\)

\(=x^3.\left(x+y-2\right)+x^2y\left(x+y-2\right)-0+3\)

\(=0+0+3\)

\(=3\)

Vậy \(B=3\)

1) Ta có:

\(A=x^3+x^2y-2x^2-xy-y^2+3y+x-1\)

\(=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+y+x-1\)

\(=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)+1\)

\(=0+0+0+1\)

\(=1\)

Vậy \(A=1\)

26 tháng 2 2017

30 tháng 9 2015

ta tính \(y'=\frac{x\left(x-2\right)}{\left(x-1\right)^2}\)

giải pt y'=0

ta  có \(x\left(x-2\right)=0\) suy ra x=0 hoặc x=2

bảng bt

x y' y -2 0 1/2 2 0 0 + - -7/3 -1 -3/2

hàm số đạt giá trị lớn nhất =-1 tại x=0, đạt giá trị nhỏ nhất =-7/3 tại x=-2

8 tháng 1 2016

khó voho

8 tháng 1 2016

Hỏi đáp Toánbit lm bài này k giup tui