K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7/  Em sửa lại đề ạ 

Cho hai số thực dương a, b thỏa mãn a+b=4ab

Chứng minh rằng  \(\frac{a}{4b^2+1}+\frac{b}{4a^2+1}\ge\frac{1}{2}\)

Đổi biến \(\left(a,b\right)\rightarrow\left(\frac{1}{x},\frac{1}{y}\right)\)

Từ giả thiết => x+y=4

Ta có: BĐT cần CM tương đương với:

\(\frac{\frac{1}{x}}{\frac{4}{y^2}+1}+\frac{\frac{1}{y}}{\frac{4}{x^2}+1}\ge\frac{1}{2}\)\(\Leftrightarrow\frac{y^2}{x\left(4+y^2\right)}+\frac{x^2}{y\left(4+x^2\right)}\ge\frac{1}{2}\left(1\right)\)

Áp dụng BĐT Schwarz, ta có:
\(\frac{x^2}{y\left(4+x^2\right)}\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)+xy^2+x^2y}=\frac{16}{16+xy^2+x^2y}\)

Ta chỉ cần chứng minh:

\(xy^2+x^2y\le16\Leftrightarrow xy^2+x^2y\le\frac{1}{4}\left(x+y\right)^3\)

\(\Leftrightarrow xy^2+x^2y\le x^3+y^3\)(luôn đúng)

Do đó (1) đúng. BĐT được chứng minh. Dấu "=" xảy ra khi x=y=2⇔a=b=\(\frac{1}{2}\)

6. (chuyên Hòa Bình)

Cho các số dương x, y, z thỏa mãn: xy+zx+4yz=32

Tìm giá trị nhỏ nhất của\(P=x^2+16y^2+16z^2\)

Áp dụng bất đẳng thức Cauchy cho  ba số dương  x,y,z ta có

\(\hept{\begin{cases}8y^2+\frac{1}{2}x^2\ge2\sqrt{8y^2.\frac{1}{2}x^2}=4xy\\8z^2+\frac{1}{2}x^2\ge2\sqrt{8z^2.\frac{1}{2}x^2}=4xz\\8y^2+8z^2\ge2\sqrt{8y^2.8z^2}=16yz\end{cases}}\)

Cộng từng vế của ba bđt trên ta có

\(P\ge4\left(xy+xz+4yz\right)=4.32=128\)

12 tháng 11 2016

Toán lớp 7 mà vào đăng vào trang lớp 6 chi vậy ? Thanh Huyền

 

24 tháng 4 2016

Q=20-/3-x/ lớn nhất khi /3-x/ nhỏ nhất 

nên /3-x/=0(vì /3-x/ luôn >=0 dấu)

     3-x=0

        x=3

24 tháng 4 2016

D=4/\x-2\+2 lớn nhất khi và chỉ khi \x-2\+2 nhỏ nhất,khác 0 và lớn hơn=2(vì \x-2\ luôn EN)

nên \x-2\+2=2

       \x-2\=0

       x-2=0

      x=2

        

 

8 tháng 1 2016

khó voho

8 tháng 1 2016

Hỏi đáp Toánbit lm bài này k giup tui

30 tháng 10 2018

a) ĐK: \(x\ge0,x\ne1,x\ne\frac{1}{4}\)

\(A=1+\left(\frac{2x+\sqrt{x}-1}{1-x}-\frac{2x\sqrt{x}-\sqrt{x}+x}{1-x\sqrt{x}}\right)\frac{x-\sqrt{x}}{2\sqrt{x}-1}\)

\(A=1+\left[\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(1-\sqrt{x}\right)}-\frac{\sqrt{x}\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(1-\sqrt{x}\right)\left(x+\sqrt{x}+1\right)}\right]\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}-1}\)

\(A=1+\left[\frac{2\sqrt{x}-1}{1-\sqrt{x}}-\frac{\sqrt{x}\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(1-\sqrt{x}\right)\left(x+\sqrt{x}+1\right)}\right]\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}-1}\)

\(A=1-\sqrt{x}+\frac{x\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}\)

\(A=\frac{x+1}{x+\sqrt{x}+1}\)

Để \(A=\frac{6-\sqrt{6}}{5}\Rightarrow\frac{x+1}{x+\sqrt{x}+1}=\frac{6-\sqrt{6}}{5}\)

\(\Rightarrow5x+5=\left(6-\sqrt{6}\right)x+\left(6-\sqrt{6}\right)\sqrt{x}+6-\sqrt{6}\)

\(\Rightarrow\left(1-\sqrt{6}\right)x+\left(6-\sqrt{6}\right)\sqrt{x}+1-\sqrt{6}=0\)

\(\Rightarrow x-\sqrt{6}.\sqrt{x}+1=0\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=\frac{\sqrt{2}+\sqrt{6}}{2}\\\sqrt{x}=\frac{-\sqrt{2}+\sqrt{6}}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=2+\sqrt{3}\\x=2-\sqrt{3}\end{cases}}\left(tmđk\right)\)

b) Xét \(A-\frac{2}{3}=\frac{x+1}{x+\sqrt{x}+1}-\frac{2}{3}=\frac{3x+3-2x-2\sqrt{x}-2}{3\left(x+\sqrt{x}+1\right)}\)

\(=\frac{x-2\sqrt{x}+1}{3\left(x+\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)^2}{3\left(x+\sqrt{x}+1\right)}\)

Do \(x\ge0,x\ne1,x\ne\frac{1}{4}\Rightarrow\left(\sqrt{x}-1\right)^2>0\)

Lại có \(x+\sqrt{x}+1=\left(\sqrt{x}+\frac{1}{2}\right)+\frac{3}{4}>0\)

Nên \(A-\frac{2}{3}>0\Rightarrow A>\frac{2}{3}\).

30 tháng 3 2016

a,Nx: (x+1)2008>=0 với mọi x

=>20- (x+1)2008< hoặc = 20

=> GTLN của A là 20 tại (x+1)2008=0

                                    => x+1=0

                                     => x=-1

Vậy GTLN của A là 20

b,Nx: /3-x/> hoặc= 0 với mọi x

=>1010-/3-x/ < hoặc = 0

=>GTLN của B là 1010 tại /3-x/=0

                                     =>3-x=0

                                     =>x=3

c, Nx : (x-1)2 > hoặc = 0 

=> (x-1)+90 > hoặc = 90

=> GTNN của C là 90 tại (x-1)2=0

                                   => x-1=0

                                   => x=1

Vậy GTNN của C là 90

d, Nx: /x+4/> hoặc =0

=> /x+4/ +2015 > hoặc = 2015 với mọi x

=>GTNN của D là 2015 tại /x+4/=0

                                       => x+4=0

                                      => x= -4

Vậy GTNN của D là 2015

30 tháng 3 2016

Ai trả lời giúp e với ạ !

13 tháng 6 2019

\(P=xy\left(x-2\right)\left(y+6\right)+13x^2+4y^2-26x+24y+46.\)

\(=\left(x^2-2x\right)\left(y^2+6y\right)+13\left(x^2-2x\right)+4\left(y^2+6y\right)+46\)

\(=\left[\left(x^2-2x\right)\left(y^2+6y\right)+4\left(y^2+6y\right)\right]+13\left(x^2-2x+4\right)-6\)

\(=\left(x^2-2x+4\right)\left(y^2+6y\right)+13\left(x^2-2x+4\right)-6\)

\(=\left(x^2-2x+4\right)\left(y^2+6y+13\right)-6\)

\(=\left[\left(x-1\right)^2+3\right]\left[\left(y+3\right)^2+4\right]-6\)

Ta có \(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2+3\ge3\)

\(\left(y+3\right)^2\ge0\forall y\Rightarrow\left(y+3\right)^2+4\ge4\)

Suy ra \(P=\left[\left(x-1\right)^2+3\right]\left[\left(y+3\right)^2+4\right]-6\ge3.4-6=6\)

Vậy giá trị nhỏ nhất của P=6 \(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=-3\end{cases}.}\)

Câu này tương tự với câu có link bên dưới phải không ạ?

https://olm.vn/hoi-dap/detail/223114327893.html

25 tháng 4 2020

Ta có:

\(P=xy\left(x-2\right)\left(y+6\right)+13x^2+4y^2-26x+24y+46\)

\(=\left[x\left(x-2\right)\right]\left[y\left(y+6\right)\right]+\left(13x^2-26x\right)+\left(4y^2+24y\right)+46\)

\(=\left(x^2-2x\right)\left(y^2+6y\right)+13\left(x^2-2x\right)+4\left(y^2+6y\right)+46\)

\(=\left[\left(x-1\right)^2-1\right]\left[\left(y+3\right)^2-9\right]+13\left[\left(x-1\right)^2-1\right]\)

\(+4\left[\left(y+3\right)^2-9\right]+46\)

Đặt \(x-1=u;y+3=v\)

Khi đó \(P=\left(u^2-1\right)\left(v^2-9\right)+13\left(u^2-1\right)+4\left(v^2-9\right)+46\)

\(=u^2v^2-v^2-9u^2+9+13u^2-13+4v^2-36+46\)

\(=u^2v^2+4u^2+3v^2+6\ge6\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}u=0\\v=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-1=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)