K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: \(=\dfrac{2014\cdot2015^2+2014\cdot2016-2016\cdot2015^2+2016\cdot2014}{2014\cdot2013^2-2014\cdot2012-2012\cdot2013^2-2012\cdot2014}\)

\(=\dfrac{2015^2\cdot\left(-2\right)+2\cdot\left(2015^2-1\right)}{2013^2\cdot\left(-2\right)-2\cdot\left(2013^2-1\right)}\)

\(=\dfrac{\left(-2\right)\cdot\left(2015^2-2015^2+1\right)}{\left(-2\right)\cdot\left(2013^2+2013^2-1\right)}=\dfrac{1}{2\cdot2013^2}\)

15 tháng 12 2015

\(\left(a+b+c\right)^2=2016^2\Leftrightarrow a^2+b^2+c^2+2\left(ab+cb+ca\right)=2016^2\)

\(\Leftrightarrow A=a^2+b^2+c^2=2016^2-2\left(ab+cb+ca\right)\) chia hết cho 2

=> A là 1 số chẵn

21 tháng 3 2017

\(a^2+b^2+c^2=1\Rightarrow a^2,b^2,c^2\le1\)\(\Rightarrow a,b,c\le1\)

Ta lại có: \(a^2+b^2+c^2=a^3+b^3+c^3\)

\(\Leftrightarrow a^3-a^2+b^3-b^2+c^3-c^2=0\)

\(\Leftrightarrow a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)=0\)

Mà \(a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)\le0\forall a,b,c\)(vì \(a^2,b^2,c^2\le0\) và \(a,b,c\le1\))

Suy ra ta phải có: \(a^2\left(a-1\right)=b^2\left(b-1\right)=c^2\left(c-1\right)=0\)

Kết hợp gt suy ra 3 số a,b,c phải là 1 số bằng 1 và 2 số còn lại bằng 0

Vì a,b,c vai trò như nhau nên giả sử \(a=1\Rightarrow b=c=0\)

Khi đó \(A=0^{2014}+1^{2015}+1^{2016}=1+1=2\)