K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2019

Tặng acc Online Math hơn 100 điểm hỏi đáp cho 50 thành viên đầu tiên !

Link nè : http://123link.vip/MlazJtj

Nhanh tay không hết ! Ưu đãi có hạn !

Buổi tối vui vẻ !

Chúc các bạn nhận acc thành công !

13 tháng 3 2019

dễ mà ai chẳng làm đc anh

16 tháng 1 2019

1. \(a< b\Leftrightarrow2a< 2b\Leftrightarrow2a+1< 2b+1\)

\(a< b\Leftrightarrow-3a>-3b\Leftrightarrow-3a>-3b-1\)

2.\(a>b>0\Leftrightarrow a.\frac{1}{ab}>b.\frac{1}{ab}\Leftrightarrow\frac{1}{b}>\frac{1}{a}\Leftrightarrow\frac{1}{a}< \frac{1}{b}\)

22 tháng 4 2017

Ta có:

a < b và 2 > 0 => 2a < 2b

a < b cộng hai vế với a

=> a + a < a + b => 2a < a + b

a < b và -1 < 0 => -a > -b

15 tháng 4 2018
https://i.imgur.com/j3XSqUo.jpg
17 tháng 3 2019

TA có:\(a>2b\)

\(\Rightarrow a-b>2b-b\)

\(\Rightarrow a-b>b\)

\(\Rightarrow\frac{a-b}{b}>1\left(ĐPCM\right)\)

22 tháng 4 2017

a) Từ a + 5 < b + 5

=> a + 5 + (-5) < b + 5 + (-5) (cộng hai vế với -5)

=> a < b

Giải bài 13 trang 40 SGK Toán 8 Tập 2 | Giải toán lớp 8

8 tháng 4 2021

a)từ a+5<b+5 ta cộng -5 vào 2 vế được a<b

b)từ -3a>-3b ta nhân 2 vế với -1/3 (tức là chia cả 2 vế cho -3) và -3a . -1/3< -3b . -1/3 sẽ được a<b

22 tháng 6 2019

\(4a^2+b^2=5ab\)

\(\Rightarrow4a^2-5ab+b^2=0\)

\(\Rightarrow\left(4a^2-4ab\right)-\left(ab-b^2\right)=0\)

\(\Rightarrow4a\left(a-b\right)-b\left(a-b\right)=0\)

\(\Rightarrow\left(a-b\right)\left(4a-b\right)=0\)

Làm nốt

25 tháng 3 2019

sai đề rồi bạn.\(\frac{a}{b}>\frac{a+c}{b+c}\) với \(a>b\) mới đúng nha.

Ta có:\(A=\frac{10^{17}+1}{10^{16}+1}>\frac{10^{17}+1+9}{10^{16}+1+9}=\frac{10^{17}+10}{10^{16}+10}=\frac{10\left(10^{16}+1\right)}{10\left(10^{15}+1\right)}=\frac{10^{16}+1}{10^{15}+1}\)

\(\Rightarrow A>B\)

25 tháng 3 2019

:DDDDDD

21 tháng 4 2018

Ta có: \(a>b>0\)

   \(\Rightarrow a^2>b^2\)

\(\Rightarrow a^2+a>b^2+b\)

\(\Rightarrow a^2+a+1>b^2+b+1\)

\(\Rightarrow\frac{1}{a^2+a+1}< \frac{1}{b^2+b+1}\)

\(\Rightarrow x< y\)

1 tháng 11 2018

\(x=\frac{a+1}{a^2+a+1}=1-\frac{a^2}{a+a+1}\)

\(y=\frac{b+1}{1+b+b^2}=1-\frac{b^2}{1+b+b^2}\)

Do \(\frac{a^2}{a^2+a+1}>\frac{b^2}{b^2+b+1}\Rightarrow x< y\)

8 tháng 10 2018

\(A=\frac{1+a+a^2+...+a^{n-1}}{1+a+a^2+...+a^n}=1+\frac{1}{a^n}\)

\(B=\frac{1+b+b^2+...+b^{n-1}}{1+b+b^2+...+b^n}=1+\frac{1}{b^n}\)

Vì \(a>b\) nên \(1+\frac{1}{a^n}< 1+\frac{1}{b^n}\)

Vậy \(A< B\)

Chúc bạn học tốt ~