K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 9 2020

\(\left\{{}\begin{matrix}-\frac{b}{2a}=-2\\\frac{4ac-b^2}{4a}=5\\a+b+c=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=4a\\4ac-b^2=20a\\c=1-a-b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=4a\\4ac-b^2=20a\\c=1-5a\end{matrix}\right.\)

\(\Rightarrow4a\left(1-5a\right)-16a^2=20a\)

\(\Leftrightarrow-36a=16\Rightarrow a=-\frac{4}{9}\) \(\Rightarrow b=-\frac{16}{9};c=\frac{29}{9}\)

\(\Rightarrow S=\) bấm máy

NV
12 tháng 10 2020

a/ Ta có hệ điều kiện:

\(\left\{{}\begin{matrix}-\frac{b}{2a}=2\\\frac{4ac-b^2}{4a}=4\\c=6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=-4a\\24a-b^2=16a\\c=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=-4a\\8a-16a^2=0\\c=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{2}\\b=-2\\c=6\end{matrix}\right.\) \(\Rightarrow P\)

b/ \(\left\{{}\begin{matrix}-\frac{b}{2a}=2\\\frac{4ac-b^2}{4a}=3\\c=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=-4a\\-4a-b^2=12a\\c=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=-4a\\16a^2+16a=0\\c=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=4\\c=-1\end{matrix}\right.\) \(\Rightarrow S\)

6 tháng 7 2018

Đáp án D

NV
19 tháng 8 2020

Do hàm có GTLN nên \(a< 0\)

Do ĐTHS đi qua A nên: \(a+b+c=-1\)

Hàm đạt GTLN tại \(x=-2\) nên \(-\frac{b}{2a}=-2\Leftrightarrow b=4a\)

\(\left\{{}\begin{matrix}\frac{b}{4}+b+c=-1\\a=\frac{b}{4}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=\frac{b}{4}\\c=-\frac{5}{4}b-1\end{matrix}\right.\)

GTLN của hàm bằng 5 nên: \(\frac{4ac-b^2}{4a}=5\Leftrightarrow4ac-b^2=20a\)

\(\Rightarrow b\left(-\frac{5}{4}b-1\right)-b^2=5b\)

\(\Leftrightarrow-\frac{9}{4}b^2-6b=0\Rightarrow\left[{}\begin{matrix}b=0\Rightarrow a=0\left(l\right)\\b=-\frac{8}{3}\end{matrix}\right.\)

\(\Rightarrow a=-\frac{2}{3}\) ; \(c=\frac{7}{3}\)

\(\Rightarrow25a-5b+c=...\)

Xác định phương trình hàm số bậc hai Cho ( P) y = ax2 + bx +c . Xác định a , b , c biết a, Có đỉnh I ( 3 , 6 ) và đi qua M ( 1 , -10 ) b , đò thị hàm số nhận đồ thị x =\(-\frac{4}{3}\) làm trục đối xứng và đi qua A (0 , -2 ) B ( -1 , -7 ) c , Đi qua A ( -2 , 7 ) B ( -1 , -2 ) C ( 3 , 2 ) d , Có đỉnh I ( -3 , 0 )và đi qua M ( 0 , -4 ) e , Có đỉnh I ( -1 , 1 ) và đi qua N ( \(\frac{1}{2}\) , 0 ) f , Đi qua A ( 1, 1 )...
Đọc tiếp

Xác định phương trình hàm số bậc hai

Cho ( P) y = ax2 + bx +c . Xác định a , b , c biết

a, Có đỉnh I ( 3 , 6 ) và đi qua M ( 1 , -10 )

b , đò thị hàm số nhận đồ thị x =\(-\frac{4}{3}\) làm trục đối xứng và đi qua A (0 , -2 ) B ( -1 , -7 )

c , Đi qua A ( -2 , 7 ) B ( -1 , -2 ) C ( 3 , 2 )

d , Có đỉnh I ( -3 , 0 )và đi qua M ( 0 , -4 )

e , Có đỉnh I ( -1 , 1 ) và đi qua N ( \(\frac{1}{2}\) , 0 )

f , Đi qua A ( 1, 1 ) B ( -1 ,9 ) c ( 0 , 3 )

g , Có đỉnh I ( 1 , 5 ) và đi qua A ( -1 , 1 )

h , có giá trị của trục bằng -1 và đi qua A ( 2 , -1) B ( 0 , 3 )

i , Đi qua A ( -1 , 8 0 , B ( 2 , -1 ) , C ( 1 , 0 )

j , Có đỉnh I ( 2 , 1 ) và cắt oy tại điểm có tung độ bằng 7

k ,Có giá trị lớn nhất bằng 2 và đi qua A ( 1 , 1 ) N ( -1 , 1 0

e, có giá trị nhỏ nhất bằng \(\frac{3}{4}\) khi x = \(\frac{1}{2}\)và nhận giá trị bằng 1 khi x = 1

m , Có đỉnh I ( 3 , 4 ) và đi qua M ( -1 ,0)

n , Có trục đối xứng x =1 và đi qua M ( 0 , 2 ) N ( 3 , 4 )

o , Có đỉnh \(\in\) ox , trục đói xứng x =2 đi qua N ( 0 , 2 )

p , Đi qua M ( 2 , -3 ) có đỉnh I ( 1 , -4 )

0