Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Gọi \(A\left(1;-1\right)\) và \(B\left(2;3\right)\Rightarrow\) tập hợp \(z\) thoả mãn điều kiện đề bài là đường trung trực d của đoạn AB, ta dễ dàng viết được phương trình d có dạng \(4x-y-5=0\)
Gọi \(M\left(-2;-1\right)\) và \(N\left(3;-2\right)\) và \(I\left(a;b\right)\) là điểm bất kì biểu diễn \(z\Rightarrow I\in d\) \(\Rightarrow P=IM+IN\). Bài toán trở thành dạng cực trị hình học phẳng quen thuộc: cho đường thẳng d và 2 điểm M, N cố định, tìm I thuộc d để \(P=IM+IN\) đạt GTNN
Thay toạ độ M, N vào pt d ta được 2 giá trị trái dấu \(\Rightarrow M;N\) nằm về 2 phía so với d
Gọi \(C\) là điểm đối xứng M qua d \(\Rightarrow IM+IN=IC+IN\), mà \(IC+IN\ge CN\Rightarrow P_{min}=CN\) khi I, C, N thẳng hàng
Phương trình đường thẳng d' qua M và vuông góc d có dạng:
\(1\left(x+2\right)+4\left(y+1\right)=0\Leftrightarrow x+4y+6=0\)
Gọi D là giao điểm d và d' \(\Rightarrow\left\{{}\begin{matrix}x+4y+6=0\\4x-y-5=0\end{matrix}\right.\) \(\Rightarrow D\left(\frac{14}{17};-\frac{29}{17}\right)\)
\(\overrightarrow{MD}=\overrightarrow{DC}\Rightarrow C\left(-2;-1\right)\Rightarrow P_{min}=CN=\sqrt{\left(3+2\right)^2+\left(-2+1\right)^2}=\sqrt{26}\)
Bài 2:
Tập hợp \(z\) là các điểm M thuộc đường tròn (C) tâm \(I\left(0;1\right)\) bán kính \(R=\sqrt{2}\) có phương trình \(x^2+\left(y-1\right)^2=2\)
\(\Rightarrow\left|z\right|=OM\Rightarrow\left|z\right|_{max}\) khi và chỉ khi \(M;I;O\) thẳng hàng và M, O nằm về hai phía so với I
\(\Rightarrow M\) là giao điểm của (C) với Oy \(\Rightarrow M\left(0;1+\sqrt{2}\right)\Rightarrow\) phần ảo của z là \(b=1+\sqrt{2}\)
Câu 3:
\(\overline{z}=\left(i+\sqrt{2}\right)^2\left(1-\sqrt{2}i\right)=5+\sqrt{2}i\)
\(\Rightarrow z=5-\sqrt{2}i\Rightarrow b=-\sqrt{2}\)
Câu 4
\(z.z'=\left(m+3i\right)\left(2-\left(m+1\right)i\right)=2m-\left(m^2+m\right)i+6i+3m+3\)
\(=5m+3-\left(m^2+m-6\right)i\)
Để \(z.z'\) là số thực \(\Leftrightarrow m^2+m-6=0\Rightarrow\left[{}\begin{matrix}m=2\\m=-3\end{matrix}\right.\)
Câu 5:
\(A\left(-4;0\right);B\left(0;4\right);M\left(x;3\right)\)
\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(4;4\right)\\\overrightarrow{AM}=\left(x+4;3\right)\end{matrix}\right.\) \(\Rightarrow A,B,M\) khi và chỉ khi \(\frac{x+4}{4}=\frac{3}{4}\Rightarrow x=-1\)
Câu 6:
\(z=3z_1-2z_2=3\left(1+2i\right)-2\left(2-3i\right)=-1+12i\)
\(\Rightarrow b=12\)
Câu 7:
\(w=\left(1-i\right)^2z\)
Lấy môđun 2 vế:
\(\left|w\right|=\left|\left(1-i\right)^2\right|.\left|z\right|=2m\)
Câu 8:
\(3=\left|z-1+3i\right|=\left|z-1-i+4i\right|\ge\left|\left|z-1-i\right|-\left|4i\right|\right|=\left|\left|z-1-i\right|-4\right|\)
\(\Rightarrow\left|z-1-i\right|\ge-3+4=1\)
bài 1) đặc \(z=a+bi\) với \(a;b\in z;i^2=-1\)
ta có : \(\left(1+i\right)z+\overline{z}=i\Leftrightarrow\left(1+i\right)\left(a+bi\right)+\left(a-bi\right)=i\)
\(\Leftrightarrow a-b+ai+bi+a-bi=i\Leftrightarrow2a-b+ai=i\)
\(\Leftrightarrow\left\{{}\begin{matrix}2a-b=0\\a=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)
\(\Rightarrow z=1+2i\) \(\Rightarrow W=1+i+z=1+i+1+2i=2+3i\)
\(\Rightarrow\) \(modul\) của số phức \(W\) là : \(\left|W\right|=\sqrt{2^2+3^2}=\sqrt{13}\)
vậy .............................................................................................................
bài 2) đặc \(z=a+bi\) với \(a;b\in z;i^2=-1\)
ta có : \(z^2\left(1-i\right)+2\overline{z}^2\left(1+i\right)=21-i\)
\(\Leftrightarrow\left(a+bi\right)^2\left(1-i\right)+2\left(a-bi\right)^2\left(1+i\right)=21-i\)
\(\Leftrightarrow\left(a^2+2abi-b^2\right)\left(1-i\right)+2\left(a^2-2abi-b^2\right)\left(1+i\right)=21-i\)\(\Leftrightarrow a^2-a^2i+2abi+2ab-b^2+b^2i+2\left(a^2+a^2i-2abi+2ab-b^2-b^2i\right)=21-i\)
\(\Leftrightarrow a^2-a^2i+2abi+2ab-b^2+b^2i+2a^2+2a^2i-4abi+4ab-2b^2-2b^2i=21-i\)
\(\Leftrightarrow a^2-a^2i+2abi+2ab-b^2+b^2i+2a^2+2a^2i-4abi+4ab-2b^2-2b^2i=21-i\)\(\Leftrightarrow3a^2+6ab-3b^2+a^2i-2abi-b^2i=21-i\)
\(\Leftrightarrow\left(3a^2+6ab-3b^2\right)+\left(a^2-2ab-b^2\right)i=21-i\)
\(\Leftrightarrow\left\{{}\begin{matrix}3a^2+6ab-3b^2=21\\a^2-2ab-b^2=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3a^2+6ab-3b^2=21\\3a^2-6ab-3b^2=-1\end{matrix}\right.\)
\(\Rightarrow-ab=-2\Leftrightarrow-a^2b^2=-4\) và \(a^2-b^2=3\)
\(\Rightarrow a^2\) và \(-b^2\) là nghiệm của phương trình \(X^2-3X-4=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2=4\\-b^2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2=4\\b^2=1\end{matrix}\right.\)
\(\Rightarrow\) \(modul\) của số phức \(z\) là \(\left|z\right|=\sqrt{a^2+b^2}=\sqrt{4+1}=\sqrt{5}\)
vậy ...................................................................................................................
hôm sau phân câu 1 ; câu 2 rỏ ra nha bạn . cho dể đọc thôi
bài 1) đặc \(z=a+bi\) với \(a;b\in z;i^2=-1\)
ta có : \(\left(i\overline{z}+3+i\right)\left(iz+1\right)=0\)
\(\Leftrightarrow\left(i\left(a-bi\right)+3+i\right)\left(i\left(a+bi\right)+1\right)=0\)
\(\Leftrightarrow\left(ai+b+3+i\right)\left(ai-b+1\right)=0\)
\(\Leftrightarrow-a^2-abi+ai+abi-b^2+b+3ai-3b+3-a-bi+i=0\)
\(\Leftrightarrow\left(-a^2-b^2-2b-a\right)+\left(4a-b\right)i=-3-i\)
\(\Leftrightarrow\left\{{}\begin{matrix}-a^2-b^2-2b-a=-3\\4a-b=-1\end{matrix}\right.\) giải phương trình theo cách thế ta có
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=-1\\b=-3\end{matrix}\right.\\\left\{{}\begin{matrix}a=0\\b=1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow z=-1-3i;z=i\)
bài 2) đặc \(z=a+bi\) với \(a;b\in z;i^2=-1\)
ta có : \(z^2-\overline{z}=0\Leftrightarrow\left(a+bi\right)^2-\left(a-bi\right)=0\)
\(\Leftrightarrow a^2-b^2+2abi=a-bi\) \(\Leftrightarrow\left\{{}\begin{matrix}a^2-b^2=a\\2ab=-b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{-1}{2}\\b=\pm\dfrac{\sqrt{3}}{2}\end{matrix}\right.\) \(\Rightarrow z=-\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}i;z=-\dfrac{1}{2}-\dfrac{\sqrt{3}}{2}i\)
Lời giải:
Trên mp tọa độ \(Oxy\) ta xét các điểm \(A(-2,1);B(4,7);C(1,-1)\). Tập hợp các điểm biểu diễn số phức $z$ là $M$
Theo bài ra ta có:
\(|z-(-2+i)|+|z-(4+7i)|=6\sqrt{2}\Leftrightarrow MA+MB=6\sqrt{2}\)
Mà \(AB=\sqrt{(-2-4)^2+(1-7)^2}=6\sqrt{2}\Rightarrow MA+MB=AB\)
Do đó điểm \(M\) nằm trên đoạn thẳng $AB$
Đề bài yêu cầu tìm max min của \(|z-(1-i)|\), tức là tìm max, min của đoạn \(MC\)
Dựa vào hình vẽ, suy ra \(MC_{\min}=d(C,AB)\).
Do biết tọa độ $A,B$ nên dễ dàng viết được PTĐT $AB$ là : \(y=x+3\)
\(\Rightarrow MC_{\min}=d(C,AB)=\frac{|1-(-1)+3|}{\sqrt{2}}=\frac{5\sqrt{2}}{2}\)
Vì \(M\) chỉ chạy trên đoạn $AB$ nên \(MC_{\max}=CA\) hoặc $CB$
Thấy \(CA< CB\Rightarrow CM_{\max}=CB=\sqrt{(4-1)^2+(7+1)^2}=\sqrt{73}\) khi \(M\equiv B\)
Vậy \(\left\{\begin{matrix} |z-1+i|_{\min}=\frac{5\sqrt{2}}{2}\\ |z-i+1|=\sqrt{73}\end{matrix}\right.\)
10.
\(\left(2x-3yi\right)+\left(1-3i\right)=x+6i\)
\(\Leftrightarrow\left(2x+1\right)+\left(-3y-3\right)i=x+6i\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=x\\-3y-3=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)
6.
\(\left(x+1\right)^2+\left(y-2\right)^2\le25\)
\(\Rightarrow\left|\left(x+1\right)-\left(y-2\right)i\right|\le5\)
\(\Rightarrow z\) là số phức: \(\left\{{}\begin{matrix}z=\left(x+1\right)-\left(y-2\right)i\\\left|z\right|\le5\end{matrix}\right.\)
Lưu ý: hình tròn khác đường tròn. Phương trình đường tròn là \(\left(x-a\right)^2+\left(y-b\right)^2=R^2\)
Pt hình tròn là: \(\left(x-a\right)^2+\left(y-b\right)^2\le R^2\)
3.
\(z=x+yi\Rightarrow\left|x-2+\left(y-4\right)i\right|=\left|x+\left(y-2\right)i\right|\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y-4\right)^2=x^2+\left(y-2\right)^2\)
\(\Leftrightarrow-4x-8y+20=-4y+4\)
\(\Leftrightarrow x=-y+4\)
\(\left|z\right|=\sqrt{x^2+y^2}=\sqrt{\left(-y+4\right)^2+y^2}=\sqrt{2y^2-8y+16}\)
\(\left|z\right|=\sqrt{2\left(x-2\right)^2+8}\ge\sqrt{8}=2\sqrt{2}\)
17.
\(z^2+4z+4=-1\Leftrightarrow\left(z+2\right)^2=i^2\Rightarrow\left\{{}\begin{matrix}z_1=-2+i\\z_2=-2-i\end{matrix}\right.\)
\(\Rightarrow w=\left(-1+i\right)^{100}+\left(-1-i\right)^{100}=\left(1-i\right)^{100}+\left(1+i\right)^{100}\)
Ta có: \(\left(1-i\right)^2=1+i^2-2i=-2i\)
\(\Rightarrow\left(1-i\right)^{100}=\left(1-i\right)^2.\left(1-i\right)^2...\left(1-i\right)^2\) (50 nhân tử)
\(=\left(-2i\right).\left(-2i\right)...\left(-2i\right)=\left(-2\right)^{50}.i^{50}=2^{50}.\left(i^2\right)^{25}=-2^{50}\)
Tượng tự: \(\left(1+i\right)^2=1+i^2+2i=2i\)
\(\Rightarrow\left(1+i\right)^{100}=2i.2i...2i=2^{50}.i^{50}=-2^{50}\)
\(\Rightarrow w=-2^{50}-2^{50}=-2^{51}\)
18.
\(z'=\left(\frac{1+i}{2}\right)\left(3-4i\right)=\frac{7}{2}-\frac{1}{2}i\)
\(\Rightarrow M\left(3;-4\right)\) ; \(M'\left(\frac{7}{2};-\frac{1}{2}\right)\)
\(S_{OMM'}=\frac{1}{2}\left|\left(x_M-x_O\right)\left(y_{M'}-y_O\right)-\left(x_{M'}-x_O\right)\left(y_M-y_O\right)\right|\)
\(=\frac{1}{2}\left|3.\left(-\frac{1}{2}\right)-\frac{7}{2}.\left(-4\right)\right|=\frac{25}{4}\)
Lời giải:
Đặt chung \(z=a+bi(a,b\in\mathbb{R})\)
a) \(\Leftrightarrow |a+i(b-1)|=1\Leftrightarrow a^2+(b-1)^2=1\)
Do đó tập hợp điểm biểu diễn số phức $z$ nằm trên đường tròn tâm \((0,1)\) bán kính \(R=1\)
b) \(|\frac{z-i}{z+i}|=1\Rightarrow |z-i|=|z+i|\Leftrightarrow |a+i(b-1)|=|a+i(b+1)|\)
\(\Leftrightarrow a^2+(b-1)^2=a^2+(b+1)^2\Leftrightarrow b=0\)
Do đó tập hợp các điểm biểu diễn số phức $z$ nằm trên đường thẳng $y=0$ tức trục hoành
c)
\(|z|=|\overline{z}-3+4i|\Leftrightarrow |a+bi|=|(a-3)-i(b-4)|\Leftrightarrow a^2+b^2=(a-3)^2+(b-4)^2\)
\(\Rightarrow 6a+8b-25=0\)
Do đó tập hợp các điểm biểu diễn số phức $z$ nằm trên đường thẳng \(6x+8y-25=0\)
a/ \(y'=4x^3-2mx=2x\left(2x^2-m\right)\)
Do \(a=1>0\Rightarrow\)nếu \(m>0\Rightarrow\) hàm số có 1 khoảng đồng biến là \(\left(\sqrt{\frac{m}{2}};+\infty\right)\)
\(\Rightarrow\sqrt{\frac{m}{2}}\le2\Rightarrow0< m\le8\)
Vậy \(m\le8\) \(\Rightarrow\) có 8 giá trị nguyên dương
Bài 2:
\(1\le\sqrt{a^2+b^2}\le2\Rightarrow1\le a^2+b^2\le4\)
\(\Rightarrow\) Tập hợp \(z\) là hình vành khuyên giới hạn bởi 2 đường tròn có tâm là gốc tọa độ và bán kính lần lượt là 1 và 2
\(\Rightarrow S=\pi.2^2-\pi.1^2=3\pi\)
Bài 3: Không thấy câu hỏi đâu hết, chỉ thấy gọi số phức z mà ko thấy yêu cầu làm gì với nó cả :(
Bài 4:
Do \(A\in d_1:\left\{{}\begin{matrix}x=2+t\\y=3+t\\z=3-2t\end{matrix}\right.\) \(\Rightarrow A\left(a+2;a+3;3-2a\right)\)
\(\Rightarrow\overrightarrow{CA}=\left(a-1;a+1;-2a\right)\)
Do \(d_2\perp AC\Rightarrow\overrightarrow{CA}.\overrightarrow{u_{d2}}=0\)
\(\Rightarrow1\left(a-1\right)-2\left(a+1\right)+1\left(-2a\right)=0\)
\(\Rightarrow-3a=3\Rightarrow a=-1\)
\(\Rightarrow x_A=a+2=1\)
\(z+1+2i=\left(1+i\right)\left|z\right|=\left|z\right|+i.\left|z\right|\)
\(\Leftrightarrow z=\left|z\right|-1+\left(\left|z\right|-2\right)i\)
Lấy mođun 2 vế:
\(\Rightarrow\left|z\right|=\sqrt{\left(\left|z\right|-1\right)^2+\left(\left|z\right|-2\right)^2}\)
\(\Leftrightarrow\left|z\right|^2=\left|z\right|^2-2\left|z\right|+1+\left|z\right|^2-4\left|z\right|+4\)
\(\Leftrightarrow\left|z\right|^2-6\left|z\right|+5=0\Rightarrow\left[{}\begin{matrix}\left|z\right|=1\left(l\right)\\\left|z\right|=5\end{matrix}\right.\)
\(\Rightarrow a^2+b^2=5\)
Không đủ dữ kiện để tính \(P=a+b\)
Đáp án A