K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2016

Hình tự vẽ nha 

Giải : Kẻ DI vuông góc với AB, DK vuông góc với AC. Xét ΔADC và ΔADB : các đường cao DI = DK, các đáy AC = 2 AB nên SADC = 2 SADB. Vẫn xét hai tam giác trên có chung đường cao kẻ từ A đến BC, do SADC = 2 SADB nên DC = 2 DB. Giải tương tự như trên, ta chứng minh được bài toán tổng quát : Nếu AD là phân giác của ΔABC thì DB/DC = AB/AC. Bài toán 2 : Cho hình thang ABCD (AB // CD), các đường chéo cắt nhau tại O. Qua O, kẻ đường thẳng song song với hai đáy, cắt các cạnh bên AC và BC theo thứ tự tại E và F. Chứng minh rằng OE = OF

 

28 tháng 11 2015

a)

Có: BC = 2AB (gt) => AB = 1/2 BC    (1)

Có: E là trung điểm của BC (gt) =>BE = 1/2 BC     (2)

=> từ (1) và (2), ta có :    AB=BE

xét tam giác ADB và tam giác EDB, ta có :

BD :cạnh chung

Góc ABD = góc DBE (gt)

AB=BE (chứng minh trên)

=> tam giác ADB = tam giác EDB (c.g.c)

=> góc ADB = góc BDE (hai góc tương ứng)

=> DB là tia phân giác của góc ADE

b) vì tam giác ADB = tam giác EDB (chứng minh trên)

=> góc A = góc BED = 90 độ (hai góc tương ứng)

*ta có : góc BED + góc DEC = 180 độ (kề bù)

=> góc DEC = 180 độ - góc BED

thay số : góc DEC = 180 độ - 90 độ = 90 độ

xét tam giác BDE (góc BED = 90 độ) và tam giác CDE (góc DEC = 90 độ), ta có :

DE :cạnh chung

BE=EC (gt)

=> tam giác BDE = tam giác CDE (hai cạnh góc vuông)

=> BD = DC (hai cạnh tương ứng)

 

23 tháng 11 2018

câu c mô

2 tháng 1 2017

A B C E D

Xét tam giác ABD và tam giác EBD có :

AB = BE (trung điểm)

góc ABD = góc EBD (phân giác)          => tam giác ABD = tam giác EBD (c.g.c)

BD chung 

=> góc BDA = góc BDE 

Mà DB thuộc góc ADE 

=> DB là phân giác của góc ADE

b) Ta có góc BAD = góc BED (2 góc tương ứng)

Vì góc BED kề bù với góc CED 

=> góc BED + CED = 180

mà góc BED = 90

=> góc CED = 90

Xét tam giác BED và tam giác CED có :

BE = CE

Góc BED = góc CED          => tam giác BED = tam giác CED (c.g.c)

DE chung

=> BD = CD (2 cạnh tương ứng)

c) tự làm 

2 tháng 1 2017

Từ 2 tam giác bằng nhau BED và tam giác CED , có 

góc DBE = ECD (2 góc tương ứng )

Mà góc ABD = góc DBE = góc ECD  (1)

Xét tam giác ABC có :

góc BAC + góc ABC + góc BCA = 180

Mà góc BAC = 90 ; và (1)

=> góc ABC + góc BCA = 2.góc ABD + góc ABD = 90

=> 3. góc ABD = 90

=> góc ABD = 30

=> ABD = góc DBE = góc ECD = 30

=> Góc ABC = 60 ; góc BCA = 30

23 tháng 7 2021

Mình đã đăng lại câu hỏi dễ hiểu hơn theo link này rồi ạ: https://olm.vn/hoi-dap/detail/1306671964747.html?auto=1

(^-^'')CẦN GIẢI GẤP ĐỐNG BÀI NÀY(Có cả hình ở mỗi bài nha!)Câu 1: Cho tam giác ABC có AB = AC. Kẻ BD vuông góc với AC (D∈AC),CE vuông góc với AB ( E ∈ AB ). Gọi O là giao điểm của BD và CE. Chứng minh : a) BD = CEb) Tam giác OEB bằng tam giác ODCc) AO là tia phân giác của góc BACd) Gọi M là trung điểm của BC. Chứng minh :  A,O,M thẳng hàng.Câu 2 :Câu 3 :Cho tam giác ABC có AC>AB. Nối A với trung điểm M của...
Đọc tiếp

(^-^'')
CẦN GIẢI GẤP ĐỐNG BÀI NÀY
(Có cả hình ở mỗi bài nha!)

Câu 1: Cho tam giác ABC có AB = AC. Kẻ BD vuông góc với AC (D∈AC),CE vuông góc với AB ( E ∈ AB ). Gọi O là giao điểm của BD và CE. Chứng minh : 
a) BD = CE
b) Tam giác OEB bằng tam giác ODC
c) AO là tia phân giác của góc BAC
d) Gọi M là trung điểm của BC. Chứng minh :  A,O,M thẳng hàng.

Câu 2 :

Câu 3 :Cho tam giác ABC có AC>AB. Nối A với trung điểm M của BC. Trên tia AM lấy điểm E sao cho M là trung điểm của AE, Nối C với E. 
a) So sánh AB và CE
b) Chứng minh : \(\frac{AC-AB}{2}< AM< \frac{AC+AB}{2}.\)

Câu 4: Cho ∆ABC vuông tại C có góc A = 60o. Tia phân giác của góc BAC cắt BC ở E. Kẻ EK ⊥ AB( K ∈ AB ).Kẻ BD ⊥ AE( D ∈ AE ). Chứng minh: 

a) AC=AK và AE ⊥ CK
b) KA=KB
c) EB>AC
d) Ba đường thẳng AC,BD,KE đồng quy.

Câu 5: Cho ∆ABC có AB<AC. Trên cạnh AC lấy điểm D sao cho CD=AB. Hai đường trung trực của BD và AC cắt nhau tại E. Chứng minh rằng:
a)∆AEB = ∆CED
b) AE là tia phân giác trong tại đỉnh A của ∆ABC

4
8 tháng 4 2019

Càng nhanh càng tốt nha :D