Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(t\left(s\right)\)là thời gian để hai xe đuổi kịp nhau. \(\left(t>0\right)\)
Ta có: \(4t+\frac{1}{2}.0,2t^2=200+1.t+\frac{1}{2}.0,1.t^2\)
\(\Leftrightarrow\frac{1}{20}t^2+3t-200=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=40\left(tm\right)\\t=-100\left(l\right)\end{cases}}\)
Vị trí hai xe gặp nhau cách A quãng đường là: \(4.40+\frac{1}{2}.0,2.40^2=320\left(m\right)\)
bài 1: Chọn chiều dương là chiều chuyển động, góc thời gian lúc xe 1 bắt đầu cđ.
pt cđ của xe 1: x1= v01.t + a1.t2/2 = 0,25.t2
pt cđ của xe 2: x1= v02.t = 10t
Khi xe 1 đuổi kịp xe 2: x1=x2 <=> 0,25.t2=10t <=> t = 40s
=> S1 = 0,25.402=400m ; v1 = 0,5.40 = 20 m/s
bài 2: Chọn chiều dương là chiều cđ, góc thời gian lúc xe ô tô khởi hành từ A.
ptvt xe 1: v1 = 0,5.t ; ptvt xe 2: v2 = 5 + 0,3t
ptcđ xe 1: x1 =-0,25.t2 ; ptcđ xe 2: x2 = -125 + 5t + 0,15.t2
a. gặp nhau <=> x1 = x2 <=>-0,25.t2 = -125 + 5t + 0,15.t2 <=> t = 18,3s
vị trí gặp nhau: |-0,25*t2| = 84m -> cách A 84m
v1 = ... ; v2 = ....
b. xe từ A -> B:-125 = -0,25.t2 <=> t = 10\(\sqrt{5}\)s => xe A đi được 125m
=>qđ xe từ B đi được: x2 = 61,8m
gốc tọa độ tại A, chiều dương từ A-B, gốc thời gian lúc xe 1 bắt đầu chuyển động
a) x1=x0+v0.t+a.t2.0,5=0,2t2
x2=x0+vo.t+a.t2.0,5=560-10t+0,1t2
b) hai xe gặp nhau x1=x2\(\Rightarrow\)\(\left[{}\begin{matrix}t=40\left(n\right)\\t=-140\left(l\right)\end{matrix}\right.\)
vậy sau 40s hai xe gặp nhau
vị trí hai xe gặp nhau x1=x2=320m
ngược chiều chuyển động nên vận tốc âm còn gia tốc ban đầu là âm ngược chiều nên thành dương CDĐ