Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét p = 2 và p = 3 ta thấy không thỏa mãn
Xét p = 5 ta thấy thỏa mãn
Xét p > 5 thì p chia 5 dư 1,2,3,4
Nếu p = 5k + 1 thì p + 14 = 5k + 15 (loại)
Nếu p = 5k + 2 thì p + 18 = 5k + 20 (loại)
Nếu p = 5k + 3 thì p + 2 = 5k + 5 (loại)
Nếu p = 5k + 4 thì p + 6 = 5k + 10(loại)
Vậy p = 5
TL:
Xét p = 2 và p = 3 ta thấy không thỏa mãn
Xét p = 5 ta thấy thỏa mãn
Xét p > 5 thì p chia 5 dư 1,2,3,4
Nếu p = 5k + 1 thì p + 14 = 5k + 15 (loại)
Nếu p = 5k + 2 thì p + 18 = 5k + 20 (loại)
Nếu p = 5k + 3 thì p + 2 = 5k + 5 (loại)
Nếu p = 5k + 4 thì p + 6 = 5k + 10(loại)
Vậy p = 5
^HT^
Bài 1: ba số tự nhiên lẻ liên tiếp đều là số nguyên tố là 3;5;7
Bài 1 :
Gọi 3 số đó là p ; p + 2 ; p + 4
+ Nếu p = 2 thì p + 2 = 2 + 2 = 4 là hợp số
+ Nếu p = 3 thì p + 2 = 3 + 2 = 5 ; p + 4 = 3 + 4 = 7 đều là số ng tố
Với p là số nguyên tố lớn hơn 3 thì p chỉ có dạng 3k + 1 hoặc 3k + 2
+ Nếu p = 3k + 2 thì p + 4 là hợp số ( loại )
+ Nếu p = 3k + 1 thì p + 2 là hợp số ( loại )
Vậy ba số ng tố đó là : 3 ; 5 ; 7
2a) với P=2 thì P+10=12
\(\Rightarrow\)p+10 là h/s( loại)
Với P=3 thì P+10=13; P+38=41
\(\Rightarrow\)tat cả đều là n/t
Với P>3 cơ 3p+1 hoặc 3k+2
+ Nếu P=3p+1 thì P+38=3p+1+39=3p+39\(⋮\)
Vậy P=3p+1 là không thỏa mãn
+ Nếu P= 3k+2 thì P+10=3k+2+10=3k+12\(⋮\)3
Vậy P=3k+2 là không thỏa mãn
Vậy P=3
b) với p=2 thì P+2=4
\(\Rightarrow\)p+2 là h/s ( loại)
Với P=3 thì p+6=9
\(\Rightarrow\)p+6 là h/s ( loại)
Với P=5 thì P+2=7; P+6=11; P+14=19; P+18=23
\(\Rightarrow\)tat cả đều là n/t
Với P>5 có 5p+1,5n+2,5k+3,5t+4
Với P=5p+1 thì P+14=5p+1+14=5p+15\(⋮\)5
Với P=5n+2 thì P+18=5n+2+18=5n+20\(⋮\)5
Với P=5k+3 thì P+2=5k+3+2=5k+5\(⋮\)5
Với P=5t+4 thì P+6=5t+4+6=5t+10\(⋮\)5
Vậy P=5
Giả sử có 3 số nguyên là p;q;r sao cho \(p^q+q^p=r\)
Khi đó r > 3 nên r là số lẻ
=> p.q không cùng tính chẵn lẻ
Giả sử p=2 là q là số lẻ khi đó \(2^q+q^2=r\)
Nếu q không chia hết cho 3 thì q^2 =1 (mod3)
Mặt khác vì q lẻ nên \(2^q\)= -1(mod3)
Từ đó suy ra: \(2^q+q^2⋮3\Rightarrow r⋮3\)(vô lí)
Vậy q=3 lúc đó \(r=2^3+3^2=17\)là số nguyên tố
Vậy p=2; q=3, r=17 hoặc p=3; q=2, r=17
a) Vì 132 là số chẵn =>132 là tổng của 3 số nguyên tố =>1 trong 3 số phải la số chẵn => số chẵn đó bằng 2 mà là số ntố nhỏ nhất nên số nhỏ nhất đó là 2.
c)xét trường hợp p=2=> p+10=12 là hợp số loại
Xét trường hợp p= 3=> p+10= 13;p+20=23 đều là hợp số.
Xét trường hợp p>3 => p có 1 trong 2 dạng 3k+1;3k-1
với p= 3k +1=> p+20= 3k+21 chia hết cho 3
với p=3k-1=> p+10= 3k+9 chia hết cho 3
vậy p=3 thì p+10;p+20 đều là số ntố.
Lời giải:
Nếu $p\vdots 5$ thì $p=5$. Thay vô thấy thỏa mãn
Nếu $p=5k+1$ với $k$ nguyên thì $p+14=5k+15\vdots 5$. Mà $p+14>5$ nên $p+14$ là hợp số (loại)
Nếu $p=5k+2$ với $k$ nguyên thì $p+18=5k+20\vdots 5$. Mà $p+18>5$ nên $p+18$ là hợp số (loại)
Nếu $p=5k+3$ với $k$ là nguyên. Khi $k=0$ thì $p=3$ (thử vô không thỏa mãn). Khi $k>0$ thì thì $p+2=5k+5\vdots 5$, mà $p+2>3$ nên $p+2$ là hợp số (loại)
Nếu $p=5k+4$ với $k$ nguyên thì $p+6=5k+10\vdots 5$. Mà $p+6>5$ nên $p+6$ là hợp số (loại)
Vậy $p=5$ là đáp án duy nhất.