K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2023

a) \(5\cdot\left(x-1\right)^2=45\)

\(\Rightarrow\left(x-1\right)^2=45:5\)

\(\Rightarrow\left(x-1\right)^2=9\)

\(\Rightarrow\left(x-1\right)^2=3^2\)

\(\Rightarrow\left[{}\begin{matrix}x-1=3\\x-1=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)

b) x + 4 ⋮ x - 1 

⇒ x - 1 + 5 ⋮ x - 1 

⇒ 5 ⋮ x - 1

Vậy: \(x-1\in\text{Ư}\left(5\right)\)

Mà: \(\text{Ư}\left(5\right)=\left\{1;-1;-5;5\right\}\)

\(\Rightarrow x\in\left\{2;0;-4;6\right\}\)

c) \(\left(x+1\right)\left(2-y\right)=-5\)

Ta có bảng sau:

\(x+1\)1-1-55
\(2-y\)-5        5       1         -1          
\(x\)0-2-64
\(y\)7-313

Vậy các cặp (x;y) thỏa mãn là: (0;7) ; (-2;-3) ; (-6;1) ; (4;3)

5 tháng 8 2023

0,7

-2,-3

-6,1

4,3

19 tháng 11 2022

a: =>1/6x=-49/60

=>x=-49/60:1/6=-49/60*6=-49/10

b: =>3/2x-1/5=3/2 hoặc 3/2x-1/5=-3/2

=>x=17/15 hoặc x=-13/15

c: =>1,25-4/5x=-5

=>4/5x=1,25+5=6,25

=>x=125/16

d: =>2^x*17=544

=>2^x=32

=>x=5

i: =>1/3x-4=4/5 hoặc 1/3x-4=-4/5

=>1/3x=4,8 hoặc 1/3x=-0,8+4=3,2

=>x=14,4 hoặc x=9,6

j: =>(2x-1)(2x+1)=0

=>x=1/2 hoặc x=-1/2

16 tháng 9 2017

Ta có : \(\frac{x-1}{5}=\frac{y-2}{2}=\frac{z-2}{3}=\frac{2y-4}{4}=\frac{x-1+2y-4-\left(z-2\right)}{5+4-3}=\frac{x-1+2y-4-z+2}{6}\)

\(=\frac{x+2y-z-3}{6}=\frac{3}{6}=\frac{1}{2}\)

Nên : \(\frac{x-1}{5}=\frac{1}{2}\Rightarrow x-1=\frac{5}{2}\Rightarrow x=\frac{7}{2}\)

          \(\frac{y-2}{2}=\frac{1}{2}\Rightarrow y-2=1\Rightarrow y=3\)

             \(\frac{z-2}{3}=\frac{1}{2}\Rightarrow z-2=\frac{3}{2}\Rightarrow z=\frac{7}{2}\)

Vậy ,,,,,,,,,,,,,,,,,,

AH
Akai Haruma
Giáo viên
19 tháng 3 2019

1.

\((\frac{1}{3}xy)^2.x^3+\frac{3}{2}(2x)^3(-\frac{7}{4}x^2y^2)-\frac{2}{3}x^5y^2\)

\(=(\frac{1}{9}x^2y^2)x^3+\frac{3}{2}(8x^3)(-\frac{7}{4}x^2y^2)-\frac{2}{3}x^5y^2\)

\(=\frac{1}{9}(x^2.x^3)y^2+(\frac{3}{2}.8.\frac{-7}{4})(x^3.x^2).y^2-\frac{2}{3}x^5y^2\)

\(=\frac{1}{9}x^5y^2-21x^5y^2-\frac{2}{3}x^5y^2=\frac{-194}{9}x^5y^2\)

2.

\(\frac{-2}{5}x^2y(-y^6)+\frac{3}{2}xy(\frac{-1}{15}xy^6)+(-2xy)^2y^5\)

\(=\frac{2}{5}x^2(y.y^6)+(\frac{3}{2}.\frac{-1}{15})(x.x).(y.y^6)+4x^2(y^2.y^5)\)

\(=\frac{2}{5}x^2y^7-\frac{1}{10}x^2y^7+4x^2y^7=\frac{43}{10}x^2y^7\)

AH
Akai Haruma
Giáo viên
19 tháng 3 2019

3.

\(\frac{3}{7}xy^2z+\frac{1}{2}x^3y^2+\frac{1}{3}x^3y^2-\frac{3}{7}xy^2z\)

\(=(\frac{3}{7}xy^2z-\frac{3}{7}xy^2z)+(\frac{1}{2}x^3y^2+\frac{1}{3}x^3y^2)\)

\(=\frac{5}{6}x^3y^2\)

4.

\(\frac{2}{3}xy^2-\frac{5}{2}yz+\frac{1}{2}xy^2-\frac{2}{3}yz\)

\(=(\frac{2}{3}xy^2+\frac{1}{2}xy^2)-(\frac{5}{2}yz+\frac{2}{3}yz)\)

\(=\frac{7}{6}xy^2+\frac{19}{6}yz\)

5.

\(\frac{3}{2}xy^2z^5-\frac{5}{4}xyz^2+\frac{4}{3}xy^2z^5+\frac{1}{2}xyz^2\)

\(=(\frac{3}{2}xy^2z^5+\frac{4}{3}xy^2z^5)+(\frac{-5}{4}xyz^2+\frac{1}{2}xyz^2)\)

\(=\frac{17}{6}xy^2z^5-\frac{3}{4}xyz^2\)

9 tháng 4 2020

a) \(\frac{21}{47}+\frac{9}{45}+\frac{26}{47}+\frac{4}{5}\)

\(=\left(\frac{21}{47}+\frac{26}{47}\right)+\left(\frac{9}{45}+\frac{4}{5}\right)\)

\(=\frac{47}{47}+\left(\frac{1}{5}+\frac{4}{5}\right)\)

\(=1+1=2\)

b) \(12.\left(-\frac{2}{3}\right)^2+\frac{4}{3}\)

\(=12.\frac{4}{9}+\frac{4}{3}\)

\(=\frac{16}{3}+\frac{4}{3}\)

\(=\frac{20}{3}\)

c) \(12,5.\left(-\frac{5}{7}\right)+15.\left(-\frac{5}{7}\right)\)

\(=\left(-\frac{5}{7}\right).\left(12,5+15\right)\)

\(=\left(-\frac{5}{7}\right).27,5\)

\(=\left(-\frac{5}{7}\right).\frac{55}{2}\)

\(=-\frac{275}{14}\)

d) \(\frac{4}{5}.\left(\frac{7}{2}+\frac{1}{4}\right)^2\)

\(=\frac{4}{5}.\left(\frac{14}{4}+\frac{1}{4}\right)^2\)

\(=\frac{4}{5}.\left(\frac{15}{4}\right)^2\)

\(=\frac{4}{5}.\frac{225}{16}\)

\(=\frac{45}{4}\)

9 tháng 4 2020

a)\(\frac{21}{47}+\frac{9}{45}+\frac{26}{47}+\frac{4}{5}\)

=\(\frac{21}{47}+\frac{1}{5}+\frac{26}{47}+\frac{4}{5}\)

=\(\left(\frac{21}{47}+\frac{26}{47}\right)+\left(\frac{1}{5}+\frac{4}{5}\right)\)

=\(\frac{47}{47}+\frac{5}{5}=1+1=2\)

b)\(12.\left(-\frac{2}{3}\right)^2+\frac{4}{3}\)

=\(12.\frac{4}{9}+\frac{4}{3}\)

=\(\frac{12}{1}.\frac{4}{9}+\frac{4}{3}=\frac{48}{9}+\frac{4}{3}\)

=\(\frac{16}{3}+\frac{4}{3}=\frac{20}{3}\)

c)\(12,5.\left(-\frac{5}{7}\right)+1,5.\left(-\frac{5}{7}\right)\)

=\(\left(-\frac{5}{7}\right).\left(12,5+1,5\right)\)

=\(\left(-\frac{5}{7}\right).14=\left(-\frac{5}{7}\right).\frac{14}{1}=-10\)

d)\(\frac{4}{5}.\left(\frac{7}{2}+\frac{1}{4}\right)^2\)

=\(\frac{4}{5}.\left(\frac{14}{4}+\frac{1}{4}\right)^2\)

=\(\frac{4}{5}.\left(\frac{15}{4}\right)^2\)

=\(\frac{4}{5}.\frac{225}{16}\)

=\(\frac{900}{80}=\frac{45}{4}\)

Nhớ tick cho mình nha!banh

c: \(=\dfrac{7}{23}\cdot\left(\dfrac{-4}{3}-\dfrac{5}{2}\right)=\dfrac{7}{23}\cdot\dfrac{-8-15}{6}\)

\(=\dfrac{7}{23}\cdot\dfrac{-23}{6}=-\dfrac{7}{6}\)

d: \(=\dfrac{5}{7}\left(23+\dfrac{1}{4}-13-\dfrac{1}{4}\right)=\dfrac{5}{7}\cdot10=\dfrac{50}{7}\)

e: \(=\dfrac{2^5\cdot3^3\cdot5^3}{2^3\cdot3^3\cdot2^2\cdot5^2}=5\)

i: \(=\dfrac{1}{3^{10}}\cdot3^{50}-\dfrac{2^{10}}{3^{10}}:\dfrac{4^5}{3^{10}}\)

\(=3^{40}-1\)

20 tháng 9 2018

1,\(\dfrac{a}{b}=\dfrac{x}{y}\) khi ay=bx

2,

a,x=\(\dfrac{-1.12}{4}\)

x=\(\dfrac{-12}{4}=-3\)

b,\(\left(\dfrac{1}{3}\right)^{2x-1}=\left(\dfrac{1}{3}\right)^5\)

\(\Rightarrow\)2x-1=5

2x=6

x=6:2=3

c,\(\dfrac{4}{7}\).x=\(\dfrac{1}{5}+\dfrac{2}{3}\)

\(\dfrac{4}{7}.x=\dfrac{3}{15}+\dfrac{10}{15}\)

\(\dfrac{4}{7}.x=\dfrac{13}{15}\)

\(x=\dfrac{13}{15}:\dfrac{4}{7}\)

x=\(\dfrac{13}{15}.\dfrac{7}{4}=\dfrac{91}{60}\)

3,ta có:\(5^{202}=\left(5^2\right)^{101}\)=\(25^{101}\)

2\(^{505}\)=\(\left(2^5\right)^{101}\)=\(32^{101}\)

vì 25<32 nên \(25^{101}< 32^{101}\) hay \(5^{202}< 2^{505}\)

20 tháng 9 2018

1) \(\dfrac{a}{b}=\dfrac{x}{y}\) khi \(a.y=b.x\)

2) \(a,\dfrac{x}{12}=\dfrac{-1}{4}\)

\(\Rightarrow4x=-12\)

\(\Rightarrow x=-\dfrac{12}{4}=-3\)

Vậy x = -3

\(b,\left(\dfrac{1}{3}\right)^{2x-1}=\dfrac{1}{243}\)

\(\left(\dfrac{1}{3}\right)^{2x-1}=\left(\dfrac{1}{3}\right)^5\)

\(\Rightarrow2x-1=5\)

\(\Rightarrow x=\dfrac{5-1}{2}=2\)

Vậy x = 2

\(c,\dfrac{4}{7}x-\dfrac{2}{3}=\dfrac{1}{5}\)

\(\dfrac{4}{7}x=\dfrac{1}{5}+\dfrac{2}{3}\)

\(\dfrac{4}{7}x=\dfrac{13}{15}\)

\(\Rightarrow x=\dfrac{13}{15}:\dfrac{4}{7}=1\dfrac{31}{60}\)

Vậy \(x=1\dfrac{31}{60}\)

3) So sánh \(5^{202}\)\(2^{505}\)

\(5^{202}=\left(5^2\right)^{101}=25^{101}\)

\(2^{505}=\left(2^5\right)^{101}=32^{101}\)

\(\Rightarrow25^{101}< 32^{101}\)

\(\Rightarrow5^{202}< 2^{505}\)

21 tháng 11 2019

BÀi 2:

Cả 4 câu áp dụng tính chất này: \(\sqrt{a^2}=a\)

a)\(\sqrt{\frac{3^2}{7^2}}=\frac{3}{7}\)

b)\(\frac{\sqrt{3^2}+\sqrt{39^2}}{\sqrt{7^2}+\sqrt{92^2}}=\frac{3+39}{7+92}=\frac{42}{99}=\frac{14}{33}\)

c)\(\frac{\sqrt{3^2}-\sqrt{39^2}}{\sqrt{7^2}-\sqrt{91^2}}=\frac{3-39}{7-91}=\frac{-36}{-84}=\frac{3}{7}\)

d)\(\sqrt{\frac{39^2}{91^2}}=\frac{39}{91}=\frac{3}{7}\)

21 tháng 11 2019

b)Vì BCNN(3;5) = 15

\(\Rightarrow\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{2.5}=\frac{y}{3.5}=\frac{x}{10}=\frac{y}{15};\frac{y}{5}=\frac{z}{7}\Leftrightarrow\frac{y}{5.3}=\frac{z}{7.3}=\frac{y}{15}=\frac{z}{21}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.10=20\\y=2.15=30\\z=2.21=42\end{matrix}\right.\)

Vậy...

c)Vì BCNN(2;3;5) = 30

\(\Rightarrow2x=3y=5z\Leftrightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}=\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

WTFFFFFF>>>

d)dễ... áp dụng tính chất DTBN là ra 1/2 rồi tính

e)Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(x=\frac{y}{2}=\frac{z}{4}=\frac{4x}{4}=\frac{3y}{6}=\frac{2x}{8}=\frac{4x-3y+2x}{4-6+8}=\frac{36}{6}=6\)

\(\Rightarrow\left\{{}\begin{matrix}x=6.1=6\\y=6.2=12\\z=6.4=24\end{matrix}\right.\)

Vậy...

26 tháng 6 2019

1.

a) -5 - (-5) - (-4 - 8)

= -5 + 5 + 12

= 0 + 12

= 12.

Mình chỉ làm bài 1 thôi nhé.

Chúc bạn học tốt!

26 tháng 6 2019

Câu 2 :

\(a,\left(-x+4\right)\left(x^2+4x+14\right)\)

=> \(-x^3-4x^2-141x+4x^2+16x+564\)

=> \(-x^3-\left(4x^2-4x^2\right)-\left(141x-16x\right)+564\)

=> \(-x^3-125x+564\)

\(b,3x^2\left(-5x+4y\right)+5xy\left(-3+2\right)\)

=> \(-15x^3+12x^2y+5xy.\left(-1\right)\)

=> \(-15x^3+12x^2y-5xy\)

\(c,4xy\left(3x^2-5\right)-3y\left(4x^3-5yx\right)\)

=> \(12x^3y-20xy-3y\left(4x^3-5xy\right)\)

=> \(12x^3y-20xy-12x+15xy^2\)

=> \(\left(12x^3y-12x^3y\right)-20xy+15xy^2\)

=> \(-20xy+15xy^2\)

#~ Hết~#

AH
Akai Haruma
Giáo viên
19 tháng 3 2019

1.

\(-3x^5y^4+3x^2y^3-7x^2y^3+5x^5y^4\)

\(=(-3x^5y^4+5x^5y^4)+(3x^2y^3-7x^2y^3)\)

\(=2x^5y^4-4x^2y^3\)

2.

\(\frac{1}{2}x^4y-\frac{3}{2}x^3y^4+\frac{5}{3}x^4y-x^3y^4\)

\(=(\frac{1}{2}x^4y+\frac{5}{3}x^4y)-(\frac{3}{2}x^3y^4+x^3y^4)\)

\(=\frac{13}{6}x^4y-\frac{5}{2}x^3y^4\)

3.

\(5x-7xy^2+3x-\frac{1}{2}xy^2\)

\(=(5x+3x)-(7xy^2+\frac{1}{2}xy^2)\)

\(=8x-\frac{15}{2}xy^2\)

AH
Akai Haruma
Giáo viên
19 tháng 3 2019

4.

\(\frac{-1}{5}x^4y^3+\frac{3}{4}x^2y-\frac{1}{2}x^2y+x^4y^3\)

\(=(\frac{-1}{5}x^4y^3+x^4y^3)+(\frac{3}{4}x^2y-\frac{1}{2}x^2y)\)

\(=\frac{4}{5}x^4y^3+\frac{1}{4}x^2y\)

5.

\(\frac{7}{4}x^5y^7-\frac{3}{2}x^2y^6+\frac{1}{5}x^5y^7+\frac{2}{3}x^2y^6\)

\(=(\frac{7}{4}x^5y^7+\frac{1}{5}x^5y^7)+(-\frac{3}{2}x^2y^6+\frac{2}{3}x^2y^6)\)

\(=\frac{39}{20}x^5y^7-\frac{5}{6}x^2y^6\)

6.

\(\frac{1}{3}x^2y^5(-\frac{3}{5}x^3y)+x^5y^6=(\frac{1}{3}.\frac{-3}{5})(x^2.x^3)(y^5.y)+x^5y^6\)

\(=\frac{-1}{5}x^5y^6+x^5y^6=\frac{4}{5}x^5y^6\)