Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}\left(x+\frac{2019}{2020}\right)^{100}\ge0\\\left(y-\frac{9}{11}\right)^{200}\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x+\frac{2019}{2020}=0\\y-\frac{9}{11}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-2019}{2020}\\y=\frac{9}{11}\end{cases}}\)
Ta có : \(\left[x+\frac{2019}{2020}\right]^{100}\ge0\forall x\)
\(\left[y-\frac{9}{11}\right]^{200}\ge0\forall y\)
\(\Leftrightarrow\left[x+\frac{2019}{2020}\right]^{100}+\left[y-\frac{9}{11}\right]^{200}\ge0\forall x,y\)
Dấu " = " xảy ra khi : \(\hept{\begin{cases}x+\frac{2019}{2020}=0\\y-\frac{9}{11}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{2019}{2020}\\y=\frac{9}{11}\end{cases}}\)
a.\(A=\left|\frac{x}{5}+\frac{23}{2}\right|+\left|y-\frac{14}{3}\right|+2019\)
Ta có: \(\left|\frac{x}{5}+\frac{23}{2}\right|\ge0\forall x\)
\(\left|y-\frac{14}{3}\right|\ge0\forall x\)
\(\Rightarrow\left|\frac{x}{5}+\frac{23}{2}\right|+\left|y-\frac{14}{3}\right|\ge0\forall x\)
\(\Rightarrow\left|\frac{x}{5}+\frac{23}{2}\right|+\left|y-\frac{14}{3}\right|+2019\ge2019\)
Dấu = xảy ra khi :
\(\frac{x}{5}+\frac{23}{2}=0\Leftrightarrow\frac{x}{5}=-\frac{23}{2}\Leftrightarrow x=-\frac{115}{2}\)
\(y-\frac{14}{3}=0\Leftrightarrow y=\frac{14}{3}\)
Vậy ..............
Ta có:
a) \(\left|\frac{x}{5}+\frac{23}{2}\right|\ge0\forall x\)
\(\left|y-\frac{14}{3}\right|\ge0\forall y\)
=> \(\left|\frac{x}{5}+\frac{23}{2}\right|+\left|y-\frac{14}{3}\right|+2019\ge2019\forall x;y\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\frac{x}{5}+\frac{23}{2}=0\\y-\frac{14}{3}=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-\frac{115}{2}\\y=\frac{14}{3}\end{cases}}\)
Vậy Min của A = 2019 tại \(\hept{\begin{cases}x=-\frac{115}{2}\\y=\frac{14}{3}\end{cases}}\)
câu b tượng tự
x-[17/2-6/35]=-1/3
x-583/70=-1/3
x=-1/3+583/70
x=1679/210
vậy x=1769/210
[2/3-(x-7/4)]=9/2+5/4
[2/3-(x-7/4)]=23/4
(x-7/4)=23/4+2/3
(x-7/4)=77/12
x=77/12+7/4
x=49/6
vậy x=49/6
\(\left(2x+\frac{3}{5}\right)^2-\frac{9}{25}=0\)
\(\Leftrightarrow\left(2x+\frac{3}{5}\right)^2=\frac{9}{25}\)
\(\Leftrightarrow\left(2x+\frac{3}{5}\right)^2=\left(\frac{3}{5}\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}2x+\frac{3}{5}=\frac{3}{5}\\2x+\frac{3}{5}=-\frac{3}{5}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=0\\2x=-\frac{6}{5}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{3}{5}\end{cases}}\)
_Tần vũ_
\(3\left(3x-\frac{1}{2}\right)^3+\frac{1}{9}=0\)
\(\Leftrightarrow3\left(3x-\frac{1}{2}\right)^3=-\frac{1}{9}\)
\(\Leftrightarrow\left(3x-\frac{1}{2}\right)^3=-\frac{1}{27}\)
\(\Leftrightarrow\left(3x-\frac{1}{2}\right)^3=\left(-\frac{1}{3}\right)^3\)
\(\Leftrightarrow3x-\frac{1}{2}=\frac{-1}{3}\)
\(\Leftrightarrow3x=\frac{1}{6}\)
\(\Leftrightarrow x=\frac{1}{18}\)
_Tần Vũ_
Giải:
Vì:
\(\left\{{}\begin{matrix}\left|3x-\dfrac{1}{2}\right|\ge0\\\left|\dfrac{1}{2}y+\dfrac{3}{5}\right|\ge0\end{matrix}\right.\)
Nên dấu "=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}\left|3x-\dfrac{1}{2}\right|=0\\\left|\dfrac{1}{2}y+\dfrac{3}{5}\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-\dfrac{1}{2}=0\\\dfrac{1}{2}y+\dfrac{3}{5}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x=\dfrac{1}{2}\\\dfrac{1}{2}y=-\dfrac{3}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=-\dfrac{6}{5}\end{matrix}\right.\)
Vậy ...
b) \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|+\left|\dfrac{1}{5}y-\dfrac{1}{2}\right|\le0\)
Vì:
\(\left\{{}\begin{matrix}\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|\ge0\\\left|\dfrac{1}{5}y-\dfrac{1}{2}\right|\ge0\end{matrix}\right.\)
Dấu "=" xảy ra, khi và chỉ khi:
\(\left\{{}\begin{matrix}\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|=0\\\left|\dfrac{1}{5}y-\dfrac{1}{2}\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{2}x+\dfrac{1}{9}=0\\\dfrac{1}{5}y-\dfrac{1}{2}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{2}x=-\dfrac{1}{9}\\\dfrac{1}{5}y=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{27}\\y=\dfrac{5}{2}\end{matrix}\right.\)
Vậy ...
a) \(\left|\frac{4}{7}-x\right|+\frac{2}{5}=0\)
=> \(\left|\frac{4}{7}-x\right|=-\frac{2}{5}\), vô lí vì \(\left|\frac{4}{7}-x\right|\ge0\)
Vậy không tồn tại giá trị của x thỏa mãn đề bài
b) \(6-\left|\frac{1}{4}x+\frac{2}{5}\right|=0\)
=> \(\left|\frac{1}{4}x+\frac{2}{5}\right|=6-0=6\)
=> \(\left[\begin{array}{nghiempt}\frac{1}{4}x+\frac{2}{5}=6\\\frac{1}{4}x+\frac{2}{5}=-6\end{array}\right.\)=> \(\left[\begin{array}{nghiempt}\frac{1}{4}x=\frac{28}{5}\\\frac{1}{4}x=-\frac{32}{5}\end{array}\right.\)=> \(\left[\begin{array}{nghiempt}x=\frac{112}{5}\\x=-\frac{128}{5}\end{array}\right.\)
Vậy \(\left[\begin{array}{nghiempt}x=\frac{112}{5}\\x=-\frac{128}{5}\end{array}\right.\)
c) \(\left|x-\frac{1}{3}\right|+\left|2-\frac{4}{5}\right|=0\)
=> \(\left|x-\frac{1}{3}\right|+\left|\frac{6}{5}\right|=0\)
=> \(\left|x-\frac{1}{3}\right|+\frac{6}{5}=0\)
=> \(\left|x-\frac{1}{3}\right|=-\frac{6}{5}\), vô lí vì \(\left|x-\frac{1}{3}\right|\ge0\)
Vậy không tồn tại giá trị của x thỏa mãn đề bài
a) \(\left|3x-\frac{1}{2}\right|+\left|\frac{1}{2}y+\frac{3}{5}\right|=0\)
\(\Rightarrow\left|3x-\frac{1}{2}\right|=0\) \(\Rightarrow\left|\frac{1}{2}y+\frac{3}{5}\right|=0\)
\(\Rightarrow3x-\frac{1}{2}=0\) \(\Rightarrow\frac{1}{2}y+\frac{3}{5}=0\)
\(3x=\frac{1}{2}\) \(\frac{1}{2}y=\frac{-3}{5}\)
\(x=\frac{1}{2}:3\) \(y=\left(\frac{-3}{5}\right):\frac{1}{2}\)
\(x=\frac{1}{6}\) \(y=\frac{-6}{5}\)
KL: x = 1/6; y = -6/5
b) \(\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|\le0\)
mà \(\left|\frac{3}{2}x+\frac{1}{9}\right|>0;\left|\frac{1}{5}y-\frac{1}{2}\right|>0\)
\(\Rightarrow\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|>0\)
=> trường hợp |3/2x +1/9| + |1/5y -1/2| < 0 không thế xảy ra
\(\Rightarrow\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|=0\)
rùi bn lm tương tự như phần a nhé!
1)
a)
\(\frac{-5}{6}.\frac{120}{25}< x< \frac{-7}{15}.\frac{9}{14}\)
\(\frac{-1}{1}.\frac{20}{5}< x< \frac{-1}{5}.\frac{3}{2}\)
\(\frac{-20}{5}< x< \frac{-3}{10}\)
\(\frac{-40}{10}< x< \frac{-3}{10}\)
\(\Rightarrow Z\in\left\{-4;-5;-6;-7;-8;-9;-10;...;-39\right\}\)
\(\left|x-\frac{2}{3}\right|+\left|y+\frac{5}{9}\right|=0\)
Vì \(\left|x-\frac{2}{3}\right|\ge0\)và \(\left|y+\frac{5}{9}\right|\ge0\)nên \(\left|x-\frac{2}{3}\right|+\left|y+\frac{5}{9}\right|\ge0\)
(Dấu "="\(\Leftrightarrow\)\(\left|x-\frac{2}{3}\right|=0\)và \(\left|y+\frac{5}{9}\right|=0\))
\(\Leftrightarrow\hept{\begin{cases}x=\frac{2}{3}\\y=\frac{-5}{9}\end{cases}}\)
vì \(\left|x-\frac{2}{3}\right|>0\)hoặc =0 ;\(\left|y+\frac{5}{9}\right|>0\)hoặc =o
mà\(\left|x-\frac{2}{3}\right|+\left|y+\frac{5}{9}\right|=0\)
nên |x-2/3| =0 và |y+5/9|=0
\(\Rightarrow\hept{\begin{cases}x-\frac{2}{3}=0\\y+\frac{5}{9}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{2}{3}\\y=\frac{-5}{9}\end{cases}}}\)