\(\left|3x-\frac{1}{2}\right|+\left|\frac{1}{2}y+\frac{3}{5}\right|=0\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2018

a) \(\left|3x-\frac{1}{2}\right|+\left|\frac{1}{2}y+\frac{3}{5}\right|=0\)

\(\Rightarrow\left|3x-\frac{1}{2}\right|=0\)                                \(\Rightarrow\left|\frac{1}{2}y+\frac{3}{5}\right|=0\)

\(\Rightarrow3x-\frac{1}{2}=0\)                                      \(\Rightarrow\frac{1}{2}y+\frac{3}{5}=0\)

\(3x=\frac{1}{2}\)                                                          \(\frac{1}{2}y=\frac{-3}{5}\)

\(x=\frac{1}{2}:3\)                                                             \(y=\left(\frac{-3}{5}\right):\frac{1}{2}\)

\(x=\frac{1}{6}\)                                                                  \(y=\frac{-6}{5}\)

KL: x = 1/6; y = -6/5

b) \(\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|\le0\)

mà \(\left|\frac{3}{2}x+\frac{1}{9}\right|>0;\left|\frac{1}{5}y-\frac{1}{2}\right|>0\)

\(\Rightarrow\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|>0\)

=> trường hợp |3/2x +1/9| + |1/5y -1/2| < 0 không thế xảy ra

\(\Rightarrow\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|=0\)

rùi bn lm tương tự như phần a nhé!

15 tháng 6 2018

Giải:

Vì:

\(\left\{{}\begin{matrix}\left|3x-\dfrac{1}{2}\right|\ge0\\\left|\dfrac{1}{2}y+\dfrac{3}{5}\right|\ge0\end{matrix}\right.\)

Nên dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}\left|3x-\dfrac{1}{2}\right|=0\\\left|\dfrac{1}{2}y+\dfrac{3}{5}\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x-\dfrac{1}{2}=0\\\dfrac{1}{2}y+\dfrac{3}{5}=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x=\dfrac{1}{2}\\\dfrac{1}{2}y=-\dfrac{3}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=-\dfrac{6}{5}\end{matrix}\right.\)

Vậy ...

b) \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|+\left|\dfrac{1}{5}y-\dfrac{1}{2}\right|\le0\)

Vì:

\(\left\{{}\begin{matrix}\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|\ge0\\\left|\dfrac{1}{5}y-\dfrac{1}{2}\right|\ge0\end{matrix}\right.\)

Dấu "=" xảy ra, khi và chỉ khi:

\(\left\{{}\begin{matrix}\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|=0\\\left|\dfrac{1}{5}y-\dfrac{1}{2}\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{2}x+\dfrac{1}{9}=0\\\dfrac{1}{5}y-\dfrac{1}{2}=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{2}x=-\dfrac{1}{9}\\\dfrac{1}{5}y=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{27}\\y=\dfrac{5}{2}\end{matrix}\right.\)

Vậy ...

30 tháng 3 2017

cho vài k đi bà con ơi

24 tháng 7 2018

Bạn đăng ít một thôi!

24 tháng 7 2018

mk lỡ đăng rồi bạn ạ 

23 tháng 5 2019

\(\left(3x-1\right)\left(\frac{-1}{2}x+5\right)=0\)

\(\orbr{\begin{cases}3x-1=0\\\frac{-1}{2}x+5=0\end{cases}}\)

\(\orbr{\begin{cases}x=\frac{1}{3}\\x=10\end{cases}}\)

24 tháng 5 2019

\(\frac{1}{4}+\frac{1}{3}:(2x-1)=-5\)

\(\Rightarrow\frac{1}{3}:(2x-1)=-5-\frac{1}{4}\)

\(\Rightarrow\frac{1}{3}:(2x-1)=\frac{-21}{4}\)

\(\Rightarrow2x-1=\frac{1}{3}:-\frac{21}{4}\)

\(\Rightarrow2x-1=\frac{1}{3}\cdot-\frac{4}{21}\)

\(\Rightarrow2x-1=\frac{-4}{63}\)

\(\Rightarrow2x=-\frac{4}{63}+1\)

\(\Rightarrow2x=\frac{59}{63}\Leftrightarrow x=\frac{59}{126}\)

24 tháng 7 2019

a) \(\frac{-2}{5}+\frac{5}{6}.x=\frac{-4}{15}\)

\(\frac{5}{6}.x=\frac{-4}{15}-\frac{-2}{5}\)

\(\frac{5}{6}.x=\frac{2}{15}\)

\(x=\frac{2}{15}:\frac{5}{6}\)

\(x=\frac{4}{25}\)

b) \(\left(x-\frac{1}{5}\right)\left(y+\frac{1}{2}\right)\left(z-3\right)=0\)

\(x-\frac{1}{5}=0\)

\(x=0+\frac{1}{5}\)

\(x=\frac{1}{5}\)

\(\left(2x+\frac{3}{5}\right)^2-\frac{9}{25}=0\)

\(\Leftrightarrow\left(2x+\frac{3}{5}\right)^2=\frac{9}{25}\)

\(\Leftrightarrow\left(2x+\frac{3}{5}\right)^2=\left(\frac{3}{5}\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}2x+\frac{3}{5}=\frac{3}{5}\\2x+\frac{3}{5}=-\frac{3}{5}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x=0\\2x=-\frac{6}{5}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{3}{5}\end{cases}}\)

_Tần vũ_

\(3\left(3x-\frac{1}{2}\right)^3+\frac{1}{9}=0\)

\(\Leftrightarrow3\left(3x-\frac{1}{2}\right)^3=-\frac{1}{9}\)

\(\Leftrightarrow\left(3x-\frac{1}{2}\right)^3=-\frac{1}{27}\)

\(\Leftrightarrow\left(3x-\frac{1}{2}\right)^3=\left(-\frac{1}{3}\right)^3\)

\(\Leftrightarrow3x-\frac{1}{2}=\frac{-1}{3}\)

\(\Leftrightarrow3x=\frac{1}{6}\)

\(\Leftrightarrow x=\frac{1}{18}\)

_Tần Vũ_

15 tháng 6 2018

\(\frac{1}{3}x+\frac{2}{5}\left(x-1\right)=0\)

\(\Leftrightarrow\frac{1}{3}x+\frac{2}{5}x-\frac{2}{5}=0\)

\(\Leftrightarrow\frac{11}{15}x=\frac{2}{5}\)

\(\Leftrightarrow x=\frac{2}{5}\div\frac{11}{15}=\frac{2.15}{5.11}=\frac{6}{11}\)

Vậy x = 6/11 

15 tháng 6 2018

a) \(\frac{1}{3}.x+\frac{2}{5}.\left(x-1\right)=0\)

\(\frac{1}{3}.x+\frac{2}{5}.x-\frac{2}{5}=0\)

\(x.\left(\frac{1}{3}+\frac{2}{5}\right)-\frac{2}{5}=0\)

\(x.\frac{11}{15}-\frac{2}{5}=0\)

\(x.\frac{11}{15}=\frac{2}{5}\)

\(x=\frac{2}{5}:\frac{11}{15}\)

\(x=\frac{6}{11}\)

b) \(3.\left(x-\frac{1}{2}\right)-5.\left(x+\frac{3}{5}\right)=x+\frac{1}{5}\)

\(3x-\frac{3}{2}-5x-3=x+\frac{1}{5}\)

\(3x-5x-\left(\frac{3}{2}+3\right)=x+\frac{1}{5}\)

\(-2x-\frac{9}{2}=x+\frac{1}{5}\)

\(\Rightarrow-2x-x=\frac{1}{5}+\frac{9}{2}\)

\(-3x=\frac{47}{10}\)

\(x=\frac{47}{10}:\left(-3\right)\)

\(x=\frac{-47}{30}\)