K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2017

b, \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>10\)

Ta có: \(1< 100\Rightarrow\sqrt{1}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{1}}< \frac{1}{\sqrt{100}}\)

           \(2< 100\Rightarrow\sqrt{2}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{2}}< \frac{1}{\sqrt{100}}\)

          \(3< 100\Rightarrow\sqrt{3}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{3}}< \frac{1}{\sqrt{100}}\)

           ______________________________________________

          \(100=100\Rightarrow\sqrt{100}=\sqrt{100}\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\left(1\right)\)

Từ (1) suy ra:

\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\left(100sh\frac{1}{\sqrt{100}}\right)\)

\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}.100\)

\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>\frac{10}{\sqrt{100}}\)

\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>10\left(ĐPCM\right)\)

5 tháng 11 2017

b, \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)

\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)

.............................................

Cộng với vế 99 của BĐT trên, ta được:

\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{99}}>99.\frac{1}{10}=\frac{99}{10}\)

\(\Rightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{99}}+\frac{1}{\sqrt{100}}>\frac{99}{10}=\frac{1}{10}=\frac{100}{10}=10\)

25 tháng 11 2017

Wrecking Ball đã làm đúng

to ra kết quả giống cậu : Wrecking Ball

là đáp án đúng

tk nha ( chúc bn học gioi )

21 tháng 10 2016

đề sai

chứng minh ngược lại C/m:>10

căn2<can3<can 4=>

1/căn2>1/căn3>1/căn4

1/căn2+1/can3+1/Căn4>3/can4=3/2

1/can5+....+1/can9>5.1/can9=5/3

1/can10+...+1/can16>7/can16=7/4

...

1/can81+...1/can100>18.1/can100= 19/10

A>B=1+3/2+5/3+7/4+...+19/10>10

30 tháng 10 2017

Đề sai thật.

Xin phép sửa lại:

\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>10\)

Giải:

\(\sqrt{1}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\)

\(\sqrt{2}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)

....

\(\sqrt{99}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)

Cộng từng vế trên HĐT ta có:

\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{99}}+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}=\frac{100}{\sqrt{100}}=\frac{100}{10}\)

\(=10\)

2 tháng 12 2019

Ta có:

\(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)

\(.............\)

\(\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}\)

Khi đó:

\(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+.....+\frac{1}{\sqrt{100}}\)

\(>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+.......+\frac{1}{\sqrt{100}}\left(100sohang\right)\)

\(=10\)

2 tháng 12 2019

Có BĐT sau:

\(\sqrt{\left(n-1\right)\left(n+1\right)}< n\)

\(\Leftrightarrow\left(n-1\right)\left(n+1\right)< n^2\)

\(\Leftrightarrow n^2-1< n^2\)

\(\Leftrightarrow-1< 0\left(true!!\right)\)

Áp dụng vào ta có:

\(\sqrt{2019\cdot2021}< 2020\Rightarrowđpcm\)

13 tháng 2 2019

\(A=\frac{2!+\sqrt{3}}{2!}+\frac{3!+\sqrt{4}}{3!}+\frac{4!+\sqrt{5}}{4!}+....+\frac{2012!+\sqrt{2013}}{2012!}\)

\(=\frac{2!}{2!}+\frac{\sqrt{3}}{2!}+\frac{3!}{3!}+\frac{\sqrt{4}}{3!}+.....+\frac{2012!}{2012!}+\frac{\sqrt{2013}}{2012!}\)

\(=2012+\left(\frac{\sqrt{3}}{2!}+\frac{\sqrt{4}}{3!}+....+\frac{\sqrt{2011}}{2012!}\right)\)

Mà \(\frac{\sqrt{3}}{2!}+\frac{\sqrt{4}}{3!}+...+\frac{\sqrt{2013}}{2012!}>0\)

\(\Rightarrow A>2012+0=2012\)

Đề sai nên t sửa lại r nhé

14 tháng 2 2019

haizzzz đệ lm sai rồi kìa =((

1 tháng 3 2018


\(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\) 

.............................. 
\(\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)

Cộng vế với vế của 99 bất đẳng thức trên ta được: 
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{99}}>99\cdot\frac{1}{10}=\frac{99}{10}\)

=> A = \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{99}}+\frac{1}{\sqrt{100}}>\frac{99}{10}+\frac{1}{10}=\frac{100}{10}=10\)

19 tháng 2 2018

      \(\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}+\frac{x+349}{5}=0\)

\(\Leftrightarrow\)\(\frac{x+2}{327}+1+\frac{x+3}{326}+1+\frac{x+4}{325}+1+\frac{x+5}{324}+1 +\frac{x+349}{5}-4=0\)

\(\Leftrightarrow\)\(\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)

\(\Leftrightarrow\)\(\left(x+329\right)\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)

\(\Leftrightarrow\)\(x+329=0\)   (vì  1/327 + 1/326 + 1/325 + 1/324 + 1/5  khác  0  )

\(\Leftrightarrow\)\(x=-329\)

19 tháng 2 2018

Bài 1 : 

\(\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}+\frac{x+349}{5}=0\)

\(\Leftrightarrow\)\(\left(\frac{x+2}{327}+1\right)+\left(\frac{x+3}{326}+1\right)+\left(\frac{x+4}{325}+1\right)+\left(\frac{x+5}{324}+1\right)+\left(\frac{x+349}{5}-4\right)=0\)

\(\Leftrightarrow\)\(\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)

\(\Leftrightarrow\)\(\left(x+329\right)\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)

Vì \(\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)\ne0\)

\(\Rightarrow\)\(x+329=0\)

\(\Rightarrow\)\(x=-329\)

Vậy \(x=-329\)

12 tháng 7 2015

Đề đánh sai rồi kìa =.=

Ở dưới ít hơn 1 căn mà.