Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{1}{5}+\left(\frac{1}{5}\right)^2+\left(\frac{1}{5}\right)^3+...+\left(\frac{1}{5}\right)^{49}+\left(\frac{1}{5}\right)^{50}\)
\(5M=1+\frac{1}{5}+\left(\frac{1}{5}\right)^2+...+\left(\frac{1}{5}\right)^{48}+\left(\frac{1}{5}\right)^{49}\)
5M - M = \(1-\left(\frac{1}{5}\right)^{50}\)hay 4M = \(1-\left(\frac{1}{5}\right)^{50}\)< 1
\(\Rightarrow M=\frac{1-\left(\frac{1}{5}\right)^{50}}{4}< \frac{1}{4}\)
\(M=\frac{1}{5}+\left(\frac{1}{5}\right)^2+...+\left(\frac{1}{5}\right)^{50}\)(1)
\(\Rightarrow5M=1+\frac{1}{5}+...+\left(\frac{1}{5}\right)^{49}\)(2)
Lấy (2)-(1) ta có
\(\Rightarrow4M=1-\left(\frac{1}{5}\right)^{50}\)
\(\Rightarrow M=\frac{1-\frac{1}{5^{50}}}{4}\)
Do \(1-\frac{1}{5^{50}}< 1\)
\(\Rightarrow M< \frac{1}{4}\)
\(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{49.50}=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-...-\frac{1}{50}=\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)
\(A=B-2C\left(đpcm\right)\)