\(6x^2+5y^2=76\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2018

 6x2
 + 5y2
 = 74 (1) 
Ta có : 5x2
 + 5y2
 =< 6x2
 + 5y2
 =< 6x2
 + 6y2
<=> 5(x2
 + y2
) =< 74 =< 6(x2
 + y2

<=> 12,3 =< x2
 + y2
 =< 14,8 
<=> 13 =< x2
 + y2
 =< 14 (vì x, y tự nhiên => x2
 + y2
 tự nhiên) 
Trường hợp 1 : x2
 + y2
 = 13 (2) 
Ta có hệ : 
6x2
 + 5y2
 = 74 (1) 
x
2
 + y2
 = 13 (2) 
<=> 6x2
 + 5y2
 = 74 
5x2
 + 5y2
 = 65 
Trừ 2 phương trình : x2
 = 9 <=> x = 3 (vì x >= 0) 
Thay vào (2) y2
 = 13 - x2
 = 13 - 9 = 4 <=> x = 2 
Nghiệm : (x ; y) = (2 ; 3) 
Trường hợp 2 : x2
 + y2
 = 14 (4) 
Ta có hệ : 
6x2
 + 5y2
 = 74 (1) 
x
2
 + y2
 = 14 (3) 
<=> 6x2
 + 5y2
 = 74 
5x2
 + 5y2
 = 70 
Trừ 2 phương trình : x2
 = 4 <=> x = 2 
Thay vào (3) : y2
 = 14 - 4 = 10 <=> y = 10 (loại) 
Vậy phương trình có nghiệm nguyên duy nhất là (x ; y) = (2 ; 3)

9 tháng 4 2018

 6x2
 + 5y2
 = 74 (1) 
Ta có : 5x2
 + 5y2
 =< 6x2
 + 5y2
 =< 6x2
 + 6y2
<=> 5(x2
 + y2
) =< 74 =< 6(x2
 + y2

<=> 12,3 =< x2
 + y2
 =< 14,8 
<=> 13 =< x2
 + y2
 =< 14 (vì x, y tự nhiên => x2
 + y2
 tự nhiên) 
Trường hợp 1 : x2
 + y2
 = 13 (2) 
Ta có hệ : 
6x2
 + 5y2
 = 74 (1) 
x
2
 + y2
 = 13 (2) 
<=> 6x2
 + 5y2
 = 74 
5x2
 + 5y2
 = 65 
Trừ 2 phương trình : x2
 = 9 <=> x = 3 (vì x >= 0) 
Thay vào (2) y2
 = 13 - x2
 = 13 - 9 = 4 <=> x = 2 
Nghiệm : (x ; y) = (2 ; 3) 
Trường hợp 2 : x2
 + y2
 = 14 (4) 
Ta có hệ : 
6x2
 + 5y2
 = 74 (1) 
x
2
 + y2
 = 14 (3) 
<=> 6x2
 + 5y2
 = 74 
5x2
 + 5y2
 = 70 
Trừ 2 phương trình : x2
 = 4 <=> x = 2 
Thay vào (3) : y2
 = 14 - 4 = 10 <=> y = 10 (loại) 
Vậy phương trình có nghiệm nguyên duy nhất là (x ; y) = (2 ; 3)

22 tháng 4 2016

\(\frac{37.7+37.3}{74.25-74.10}=\frac{37.\left(7+3\right)}{74.\left(25-10\right)}=\frac{37.10}{37.2.15}=\frac{10}{30}=\frac{1}{3}\)   

\(\frac{2^{76}-2^{74}}{2^{78}-2^{76}}=\frac{2^{74}.2^2-2^{74}}{2^{76}.2^2-2^{76}}=\frac{2^{74}.\left(2^2-1\right)}{2^{76}.\left(2^2-1\right)}=\frac{2^{74}}{2^{74}.2^2}=\frac{1}{2^2}=\frac{1}{4}\)

22 tháng 4 2016

kq la 1/4

ai h cho minh minh h lai cho