Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6x2
+ 5y2
= 74 (1)
Ta có : 5x2
+ 5y2
=< 6x2
+ 5y2
=< 6x2
+ 6y2
<=> 5(x2
+ y2
) =< 74 =< 6(x2
+ y2
)
<=> 12,3 =< x2
+ y2
=< 14,8
<=> 13 =< x2
+ y2
=< 14 (vì x, y tự nhiên => x2
+ y2
tự nhiên)
Trường hợp 1 : x2
+ y2
= 13 (2)
Ta có hệ :
6x2
+ 5y2
= 74 (1)
x
2
+ y2
= 13 (2)
<=> 6x2
+ 5y2
= 74
5x2
+ 5y2
= 65
Trừ 2 phương trình : x2
= 9 <=> x = 3 (vì x >= 0)
Thay vào (2) y2
= 13 - x2
= 13 - 9 = 4 <=> x = 2
Nghiệm : (x ; y) = (2 ; 3)
Trường hợp 2 : x2
+ y2
= 14 (4)
Ta có hệ :
6x2
+ 5y2
= 74 (1)
x
2
+ y2
= 14 (3)
<=> 6x2
+ 5y2
= 74
5x2
+ 5y2
= 70
Trừ 2 phương trình : x2
= 4 <=> x = 2
Thay vào (3) : y2
= 14 - 4 = 10 <=> y = 10 (loại)
Vậy phương trình có nghiệm nguyên duy nhất là (x ; y) = (2 ; 3)
6x2
+ 5y2
= 74 (1)
Ta có : 5x2
+ 5y2
=< 6x2
+ 5y2
=< 6x2
+ 6y2
<=> 5(x2
+ y2
) =< 74 =< 6(x2
+ y2
)
<=> 12,3 =< x2
+ y2
=< 14,8
<=> 13 =< x2
+ y2
=< 14 (vì x, y tự nhiên => x2
+ y2
tự nhiên)
Trường hợp 1 : x2
+ y2
= 13 (2)
Ta có hệ :
6x2
+ 5y2
= 74 (1)
x
2
+ y2
= 13 (2)
<=> 6x2
+ 5y2
= 74
5x2
+ 5y2
= 65
Trừ 2 phương trình : x2
= 9 <=> x = 3 (vì x >= 0)
Thay vào (2) y2
= 13 - x2
= 13 - 9 = 4 <=> x = 2
Nghiệm : (x ; y) = (2 ; 3)
Trường hợp 2 : x2
+ y2
= 14 (4)
Ta có hệ :
6x2
+ 5y2
= 74 (1)
x
2
+ y2
= 14 (3)
<=> 6x2
+ 5y2
= 74
5x2
+ 5y2
= 70
Trừ 2 phương trình : x2
= 4 <=> x = 2
Thay vào (3) : y2
= 14 - 4 = 10 <=> y = 10 (loại)
Vậy phương trình có nghiệm nguyên duy nhất là (x ; y) = (2 ; 3)
\(\frac{37.7+37.3}{74.25-74.10}=\frac{37.\left(7+3\right)}{74.\left(25-10\right)}=\frac{37.10}{37.2.15}=\frac{10}{30}=\frac{1}{3}\)
\(\frac{2^{76}-2^{74}}{2^{78}-2^{76}}=\frac{2^{74}.2^2-2^{74}}{2^{76}.2^2-2^{76}}=\frac{2^{74}.\left(2^2-1\right)}{2^{76}.\left(2^2-1\right)}=\frac{2^{74}}{2^{74}.2^2}=\frac{1}{2^2}=\frac{1}{4}\)
sai de