Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{2}{5}:\left(2x+\frac{3}{4}\right)=-\frac{7}{10}\)
=> \(2x+\frac{3}{4}=-\frac{7}{10}:\frac{2}{5}\)
=> \(2x+\frac{3}{4}=-\frac{7}{4}\)
=> \(2x=\frac{-7}{4}-\frac{3}{4}\)
=> \(2x=-\frac{5}{2}\)
=> \(x=\frac{-5}{2}:2\)
=> \(x=\frac{-5}{4}\)
b) \(\frac{x+1}{3}=\frac{2-x}{2}\)
\(\Rightarrow2\left(x+1\right)=3\left(2-x\right)\)
\(\Rightarrow2x+2=6-3x\)
\(\Rightarrow2x-3x=6-2\)
\(\Rightarrow-x=4\)
\(\Rightarrow x=4\)
c) \(\left|x-\frac{3}{5}\right|.\frac{1}{2}-\frac{1}{5}=0\)
\(\Rightarrow\left|x-\frac{3}{5}\right|.\frac{1}{2}=\frac{1}{5}\)
\(\Rightarrow\left|x-\frac{3}{5}\right|=\frac{1}{5}:\frac{1}{2}\)
\(\Rightarrow\left|x-\frac{3}{5}\right|=\frac{2}{5}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{3}{5}=\frac{2}{5}\\x-\frac{3}{5}=-\frac{2}{5}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=\frac{3}{5}+\frac{2}{5}\\x=\frac{3}{5}+-\frac{2}{5}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{5}\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=1\\x=\frac{1}{5}\end{cases}}\)
d) \(x^2-4x=0\)
Ta có : \(x^2-4x=0\)
\(\Rightarrow xx-4x=0\)
\(\Rightarrow x\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-4=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=0+4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
\(A=1+3+3^2+...+3^{2016}\)
\(3A=3.\left(1+3+3^2+...+3^{2016}\right)\)
\(3A=3+3^2+3^3+...+3^{2017}\)
\(3A-A=\left(3+3^2+3^3+...+3^{2017}\right)-\left(1+3+3^2+...+3^{2016}\right)\)
\(2A=3^{2017}-1\)
\(A=\left(3^{2017}-1\right):2\)
\(B=1+6+6^2+...+6^{200}\)
\(6B=6.\left(1+6+6^2+...+6^{200}\right)\)
\(6B=6+6^2+6^3+...+6^{201}\)
\(6B-B=\left(6+6^2+6^3+...+3^{201}\right)-\left(1+6+6^2+...+6^{200}\right)\)
\(5B=6^{201}-1\)
\(B=\left(6^{201}-1\right):5\)
\(3^{x-2}.4=324\)
\(3^{x-2}=324:4\)
\(3^{x-2}=81\)
\(3^{x-2}=3^4\)
\(x-2=4\)
\(x=4+2\)
\(x=6\)
\(2x< 20\)
\(\Rightarrow x=\left\{0;1;2;3;4;5;6;7;8;9\right\}\)
a,5^x=125
=>5^x=5^3
=>x=3
b,3^2x=81
=>3^2x=3^4
=>2x=4
=>x=4:2=2
c,5^2x-3-2*5^2=5^2+3
5^2x-3-50=75
5^2x-3=75+50=125
5^2x-3=5^3
=>2x-3=3
=>2x=3+3=6
=>6:2=3
k cho mk nhé
\(a,125=5\cdot5\cdot5=5^3\Leftrightarrow x=3\)
\(b,81=3\cdot3\cdot3\cdot3=3^4\Leftrightarrow2x=4\Leftrightarrow x=4:2\Leftrightarrow x=2\)
\(c,5^{2x-3}-2\cdot5^2=5^2\cdot3\)
\(\Leftrightarrow5^{2x-3}=2\cdot5^2+5^2\cdot3\)
\(\Leftrightarrow5^{2x-3}=5^2\cdot\left(2+3\right)\)
\(\Leftrightarrow5^{2x-3}=5^2\cdot5\Leftrightarrow5^{2x-3}=5^3\)
\(\Leftrightarrow2x-3=3\Leftrightarrow2x=3+3\Leftrightarrow2x=6\Leftrightarrow x=6:2\Leftrightarrow x=3\)
a
\(5\frac{4}{7}:x+=13\)
\(\frac{39}{7}:x=13\)
\(x=\frac{39}{7}:13\)
\(x=\frac{3}{7}\)
\(\frac{4}{7}x=\frac{9}{8}-0,125\)
\(\frac{4}{7}x=1\)
\(x=1:\frac{4}{7}\)
\(x=\frac{7}{4}=1\frac{3}{4}\)
2, <=> \(\left|2x-6\right|+\left|2x+5\right|=11\)
<=> \(\left|6-2x\right|+\left|2x+5\right|=11\)
Ta có : \(\left|6-2x\right|+\left|2x+5\right|\ge\left|6-2x+2x-5\right|=\left|11\right|=11\)
Dấu = xảy ra khi : \(\left(6-2x\right)\left(2x+5\right)\ge0\)
Áp dụng tính chất ngoài-đồng trong-khác :D ta có :
\(-\frac{5}{2}\le x\le3\).
Bài 1 :
\(a)\) Ta có :
\(2^{31}+8^{10}+16^8=2^{31}+2^{30}+2^{32}=2^{30}\left(2+1+4\right)=2^{30}.7\) chia hết cho 7
Vậy \(2^{31}+8^{10}+16^8⋮7\)
\(\left(5^{2x}\cdot5^{x+2}\right):25=125^2\)
\(5^{2x+x+2}=125^2\cdot25\)
\(5^{3x+2}=\left(5^3\right)^2\cdot5^2\)
\(5^{3x+2}=5^6\cdot5^2\)
\(5^{3x+2}=5^8\)
\(\Rightarrow3x+2=8\)
\(3x=8-2\)
\(3x=6\)
\(x=6:3\)
\(x=2\)