\(3x^4+x^3+10x^2-x+6\)

phân tích thành nhân tử (sử dụng phương pháp hệ số bất định)...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2016

Đặt \(Q\left(x\right)=x^4-x^3-10x^2+2x+4\)

Giả sử nhân tử khi phân tích P(x) là \(P\left(x\right)=\left(x^2+ax+b\right)\left(x^2+cx+d\right)\)

Khai triển : \(P\left(x\right)=x^4+cx^3+dx^2+ax^3+acx^2+adx+bx^2+bcx+bd\)

\(=x^4+x^3\left(c+a\right)+x^2\left(d+ac+b\right)+x\left(ad+bc\right)+bd\)

Áp dụng hệ số bất định : \(\begin{cases}c+a=-1\\d+ac+b=-10\\ad+bc=2\\bd=4\end{cases}\) . Giải ra được \(\begin{cases}a=-3\\b=-2\\c=2\\d=-2\end{cases}\)

Vậy \(P\left(x\right)=\left(x^2-3x-2\right)\left(x^2+2x-2\right)\)

 

3 tháng 9 2016

Giả sử:

\(P\left(x\right)=\left(x^2+ax+b\right)\left(x^2+cx+d\right)\)

\(=x^4+cx^3+dx^2+ax^3+acx^2+adx+bx^2+bcx+bd\)

\(=x^4+\left(a+c\right)x^3+\left(d+ac+b\right)x^2+\left(ad+bc\right)x+bd\)

Ta có:

\(\begin{cases}a+c=-1\\d+ac+b=-10\\ad+bc=2\\bd=4\end{cases}\) \(\Rightarrow\begin{cases}a=1\\b=1\\d=4\\c=-15\end{cases}\)

\(\Rightarrow P\left(x\right)=\left(x^2+x+1\right)\left(x^2-15x+4\right)\)

3 tháng 9 2016

Đặt \(P\left(x\right)=2x^4+3x^3-9x^2-3x+2\)

Giả sử nhân tử của P(x) có dạng : \(P\left(x\right)=2\left(x^2+ax+b\right)\left(x^2+cx+d\right)=\left(x^2+ax+b\right)\left(2x^2+2cx+2d\right)\)

Khai triển : \(P\left(x\right)=2x^4+2cx^3+2dx^2+2ax^3+2acx^2+2adx+2bx^2+2bcx+2bd\)

\(=2x^4+x^3\left(2c+2a\right)+x^2\left(2d+2ac+2b\right)+x\left(2ad+2cb\right)+2bd\)

Dùng phương pháp hệ số bất định :

\(\Rightarrow\begin{cases}2a+2c=3\\2ac+2b+2d=-9\\2ad+2bc=-3\\bd=1\end{cases}\) . Giải ra được \(\begin{cases}a=-1\\b=-1\\c=\frac{5}{2}\\d=-1\end{cases}\)

Vậy \(P\left(x\right)=2\left(x^2-x-1\right)\left(x^2+\frac{5}{2}x-1\right)=\left(x^2-x-1\right)\left(2x^2+5x-2\right)\)

12 tháng 9 2018

Đặt \(x^4-2x^3-x^2-2x+1=\left(x^2+ax+1\right)\left(x^2+bx+1\right)=x^4+bx^3+x^2+ãx^3+abx^2+ax+x^2+bx+1\)

=> \(x^4-2x^3-x^2-2x+1=x^4+\left(a+b\right)x^3+\left(ab+2\right)x^2+\left(a+b\right)x+1\)

=> \(\hept{\begin{cases}a+b=-2\\ab+2=-1\\a+b=-2\end{cases}}\Rightarrow a=-3;b=1\)

11 tháng 9 2018

       \(x^4-2x^3-x^2-2x+1\)

\(=\left(x^4+x^3+x^2\right)-3x^3-3x^2-3x+\left(x^2+x+1\right)\)

\(=x^2\left(x^2+x+1\right)-3x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-3x+1\right)\)

Chúc bạn học tốt.

6 tháng 7 2016

k đi rồi giúp cho

6 tháng 7 2016

k rồi giúp cho

19 tháng 7 2018

\(a,\frac{1}{64}x^6-125y^3\)

\(=\left(\frac{1}{2}x\right)^6-\left(5y\right)^3\)

\(=\left(\frac{1}{4}x^2\right)^3-\left(5y\right)^3\)

\(\left(\frac{1}{4}x^2-5y\right)\left[\left(\frac{1}{4}x^2\right)^2+\left(\frac{1}{4}x^2\right).5y+25y^2\right]\)

\(b,27a^3-54a^2b+36ab^2-8b^3\)

\(=\left(3a\right)^3-3.2.\left(3a\right)^2b+3.3a.\left(2b\right)^2-\left(2b\right)^3\)

\(=\left(3a-2b\right)^3\)

\(c,x^6-x^6\)

\(=0\)

\(d,10x-25-x^2\)

\(=-x^2+10x-25\)

\(=-\left(x^2-10x+25\right)\)

\(=-\left(x-5\right)^2\)

31 tháng 7 2017

ấn máy tính để tìm nghiệm rồi phân tích ra

31 tháng 7 2017

\(x^3-4x^2+4x-1\)

\(=x^3-x^2-3x^2+3x+x-1\)

\(=x^2\left(x-1\right)-3x\left(x-1\right)+\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2-3x+1\right)\)