Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
32^n / 16^n = 2048
(32/16)^n = 2048
2^n = 2048
2^n = 2^11
n = 11
Vậy n = 11.
\(\frac{32^n}{16^n}=2048\)
\(\Rightarrow\left(\frac{32}{16}\right)^n=2048\)
\(\Rightarrow2^n=2048\)
\(\Rightarrow2^n=2^{11}\)
\(\Rightarrow n=11\)
Vậy n = 11
_Chúc bạn học tốt_
a)\(32^{-n}\cdot16^n=2048\)
\(\left(2^5\right)^{-n}\cdot\left(2^4\right)^n\)=2048
\(2^{-5n}\cdot2^{4n}\)=\(2^{11}\)
\(2^{-5n+4n}=2^{11}\)
\(2^{-x}=2^{11}\)
\(\Rightarrow x=-11\)
b)\(2^{-1}\cdot2^n+4\cdot2^n=9\cdot2^5\)
\(\frac{1}{2}\cdot2^n+4\cdot2^n=288\)
\(2^n\left(\frac{1}{2}+4\right)=288\)
\(2^n\cdot\frac{9}{2}=288\)
\(2^n=288:\frac{9}{2}\)
\(2^n=64\)
\(2^n=2^6\)
\(\Rightarrow n=6\)
a) 32-n . 16n = 2048
\(\frac{1}{32n}\) . 16n = 2048
\(\frac{1}{2^n.16^n}\) . 16n = 2048
\(\frac{1}{2^n}\) = 2048
2-n = 2048
2-n = 211
\(\Rightarrow\) -n = 11
\(\Rightarrow\) n = -11
Vậy n = -11
Theo đề ta có : \(32^{-n}.16^n=2048\)
\(\Rightarrow\frac{1}{32^n}.16^n=2048\)
\(\Rightarrow\frac{16^n}{32^n}=2048\)
\(\Rightarrow\left(\frac{16}{32}\right)^n=\left(\frac{1}{2}\right)^n=2048\)
\(\Rightarrow\frac{1}{2^n}=2048\)
\(\Rightarrow2^n=\frac{1}{2048}\)
\(\Rightarrow2^n=\frac{1}{2^{11}}\Rightarrow1=2^n.2^{11}\)
\(\Rightarrow2^n=2^{-11}\Rightarrow n=-11\) ( bởi vì tích của 2 số nghịch đảo bao giờ cũng bằng 1)
qui ước \(x^{-a}=\frac{1}{x^a}\)
ta có
\(32^{-n}.16^n=2048\Rightarrow\frac{1}{32^n}.16^n=2^{10}\Rightarrow\frac{16^n}{32^n}=2^{10}\)
\(\Rightarrow\left(\frac{16}{32}\right)^n=\frac{1}{2^n}=2^{10}\Rightarrow2^{-n}=2^{10}\Rightarrow-n=10\Rightarrow n=-10\)
Bạn tham khảo tại đây nhé: Câu hỏi của Khánh Huyền⁀ᶦᵈᵒᶫ .
Chúc bạn học tốt!
a) \(\frac{1}{9}.27^n=3^n\)
\(\Leftrightarrow3^{-2}.3^{3n}=3^n\)
\(\Leftrightarrow3^{3n-2}=3^n\)
\(\Leftrightarrow3n-2=n\)
\(\Leftrightarrow2n=2\)
\(\Leftrightarrow n=1\)
b)\(3^{-2}.3^4.3^n=3^7\)
\(\Leftrightarrow3^{2+n}=3^7\)
\(\Leftrightarrow2+n=7\)
\(\Leftrightarrow n=5\)
a, \(\frac{1}{9}.27^n=3^n\Leftrightarrow\frac{1}{9}.3^{3.n}=3^n\Leftrightarrow\frac{1}{3^2}=3^n:3^{3n}\Leftrightarrow\frac{1}{3^2}=3^{n-3n}=3^{2n}\)
=> 3^2n . 3^2 = 1 => 3^( 2n + 2) = 3^0 => 2n + 2 = 0 => 2n = - 2 => n = - 1
b, 3^-2.3^4 .3^n = 3^ 7 => 3^ ( -2 + 4 + n) = 3^7 => 3^ (n+ 2) = 3^7 => n + 2 = 7 => n = 5
(25) -n .24=211
2-5n+4=211
2-n=211
\(\Rightarrow\)-n=1\(\Leftrightarrow\)n=-11
Nhớ cho mik nhé. Ch
\(32^{-n}.16^n=2048\)
\(\left(2^5\right)^{-n}.\left(2^4\right)^n=2^{11}\)
\(2^{-5n}.2^{4n}=2^{11}\)
\(2^{-n}=2^{11}\)
\(\Rightarrow-n=11\)
\(\Rightarrow n=-11\)