Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bạn sai rồi !
Vì chúng đều có số mũ chẵn nên :
\(\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\ge0\) nha bạn !
\(\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\le0\) (1)
có : \(\left(2x-5\right)^{2000}\ge0\forall x\)
\(\left(3y+4\right)^{2002}\ge0\forall x\)
\(\Rightarrow\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\ge0\) (2)
\(\left(1\right)\left(2\right)\Rightarrow\left(2x-5\right)^{2000}+\left(3y-4\right)^{2002}=0\)
\(\Rightarrow\hept{\begin{cases}\left(2x-5\right)^{2000}=0\\\left(3y+4\right)^{2002}=0\end{cases}\Rightarrow\hept{\begin{cases}2x-5=0\\3y+4=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{4}{3}\end{cases}}}\)
ta thấy \(\begin{cases}\left(2x-5\right)^{2000}\\\left(3y+4\right)^{2002}\end{cases}\ge0}\)
Theo bài ra ta có (2x-5)2000+(3y+4)2002\(\le\) 0
=> (2x-5)2000+(3y+4)2002=0
=>2x-5=0 => x=2,5
=>3y+4=0=>y=\(\frac{-4}{3}\)
Vì (2x-5)2000 > 0 với mọi x
(3y+4)2002 > 0 với mọi y
=>(2x-5)2000+(3y+4)2002 > 0 ới mọi x;y
Mà (2x-5)2000+(3y+4)2002 < 0 (theo đề)
=>(2x-5)2000+(3y+4)2002=0
=>(2x-5)2000=(3y+4)2002=0
+)(2x-5)2000=0=>2x-5=0=>x=5/2
+)(3y+4)2002=0=>3y+4=0=>y=-4/3
Vậy x=5/2;y=-4/3
b) \(\left(3x-2\right)^5=-243\)
\(\Rightarrow\left(3x-2\right)^5=\left(-3\right)^5\)
\(\Rightarrow3x-2=-3\Rightarrow x=\dfrac{-1}{3}\)
c) Vì \(\left(2x-5\right)^{2000}\ge0\forall x;\left(3y+4\right)^{2002}\ge0\forall y\)
\(\Rightarrow\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\ge0\forall x,y\)
Mà theo bài ra \(\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\le0\)
\(\Rightarrow\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}=0\)
\(\Rightarrow\left\{{}\begin{matrix}2x-5=0\\3y+4=0\end{matrix}\right........\)
c. \(3^{-1}\cdot3^x+5\cdot3^{x-1}=162\)
\(\Leftrightarrow3^{x-1}\left(1+5\right)=162\)
\(\Leftrightarrow3^{x-1}=27\)
\(\Leftrightarrow3^{x-1}=3^3\)
\(\Leftrightarrow x-1=3\)
\(\Leftrightarrow x=4\)
a)4x-1+5.4x-2=576
=> 4x-1(1+5.\(4^{-1}\))=576
=> 4x-1.\(\dfrac{9}{4}\)=576
=> 4x-1=256=44
=> x-1=4
=> x=5
b) (2x-1)6=(2x-1)8
=> (2x-1)6 - (2x-1)8=0
=> (2x-1)6(1- (2x-1)2)=0
=>\(\left[{}\begin{matrix}\left(2x-1\right)^6=0\\1-\left(2x-1\right)^2=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}2x-1=0\\\left(2x-1\right)^2=1\end{matrix}\right.=>\left[{}\begin{matrix}2x=1\\\left(2x-1\right)^2=1hoặc\left(2x-1\right)^2=-1\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\2x-1=1hoặc2x-1=-1\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\2x=2hoặc2x=0\end{matrix}\right.=>\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1hoặcx=0\end{matrix}\right.\)
Vậy x\(\in\)\(\left\{\dfrac{1}{2},1,0\right\}\)
c) (2x-5)2000+(3y+4)2002 \(\le0\)
Có (2x-5)2000\(\ge\)0 với mọi x
(3y+4)2002\(\ge\)0 với mọi y
=> (2x-5)2000+(3y+4)2002 \(\ge\) 0
=> Để (2x-5)2000+(3y+4)2002 \(\le0\) thì (2x-5)2000+(3y+4)2002 =0
=> \(\left\{{}\begin{matrix}\left(2x-5\right)^{2000}=0\\\left(3y+4\right)^{2002}=0\end{matrix}\right.=>\left\{{}\begin{matrix}2x-5=0\\3y+4=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}2x=5\\3y=-4\end{matrix}\right.=>\left\{{}\begin{matrix}x=\dfrac{5}{2}\\y=\dfrac{-4}{3}\end{matrix}\right.\)
Vậy x=\(\dfrac{5}{2}\);y=\(\dfrac{-4}{3}\)
Bài 2:
Có A=2100-299+298-...+22-2
=> 2A=2(2100-299+298-...+22-2)
=> 2A= 2101-2100+299-...+23-22
=> 2A= 2101-2100+299-...+23-22
+A= 2100-299+298-...+22-2
=> 3A= 2101-2
=> A=\(\dfrac{2^{101}-2}{3}\)
(2x - 5)2000 + (3y + 4)2002
ta có: (2x - 5)2000 \(\ge\) 0 ; (3y + 4)2002 \(\ge\) 0
=> (2x - 5)2000 + (3y + 4)2002 \(\ge\) 0
Dấu "=" xảy ra khi 2x - 5 = 0 và 3y + 4 = 0
=> 2x = 5 và 3y = -4
=> x = 2,5 và y = \(\frac{-4}{3}\)
Có :
\(\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\ge0\)
Mà theo đề bài : \(\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\le0\)
\(\Rightarrow\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}=0\)
\(\Leftrightarrow\hept{\begin{cases}2x-5=0\\3y+4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{4}{3}\end{cases}}\)