Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\) Ta có :
\(A=\frac{6x+9}{3x+2}=\frac{6x+4+5}{3x+2}=\frac{6x+4}{3x+2}+\frac{5}{3x+2}=\frac{2\left(3x+2\right)}{3x+2}+\frac{5}{3x+2}=2+\frac{5}{3x+2}\)
Để A có giá trị nguyên thì \(\frac{5}{3x+2}\) phải nguyên hay \(5\) chia hết cho \(3x+2\)\(\Rightarrow\)\(\left(3x+2\right)\inƯ\left(5\right)\)
Mà \(Ư\left(5\right)=\left\{1;-1;5;-5\right\}\)
Suy ra :
\(3x+2\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(x\) | \(\frac{-1}{3}\) | \(-1\) | \(1\) | \(\frac{-7}{3}\) |
Mà \(x\) là số nguyên nên \(x\in\left\{-1;1\right\}\)
Vậy \(x\in\left\{-1;1\right\}\)
Chúc bạn học tốt ~
\(b)\) Ta có bất đẳng thức giá trị tuyệt đối như sau :
\(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)
Dấu "=" xảy ra khi và chỉ khi \(xy\ge0\)
Áp dụng vào ta có :
\(A=\left|x\right|+\left|8-x\right|\ge\left|x+8-x\right|=\left|8\right|=8\)
Dấu "=" xảy ra khi và chỉ khi \(x\left(8-x\right)\ge0\)
Trường hợp 1 :
\(\hept{\begin{cases}x\ge0\\8-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\le8\end{cases}\Leftrightarrow}0\le x\le8}\)
Trường hợp 2 :
\(\hept{\begin{cases}x\le0\\8-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le0\\x\ge8\end{cases}}}\) ( loại )
Vậy GTNN của \(A=8\) khi \(0\le x\le8\)
Chúc bạn học tốt ~
\(\left|x-1\right|+\left|2x-2\right|+\left|3x-3\right|=6\left(1\right)\)
Xét : \(x-1=0\Leftrightarrow x=1;x-1< 0\Leftrightarrow x< 1;x-1>0\Leftrightarrow x>1\)
\(2x-2=0\Leftrightarrow x=1;2x-2< 0\Leftrightarrow x< 1;2x-2>0\Leftrightarrow x>1\)
\(3x-3=0\Leftrightarrow x=1;3x-3< 0\Leftrightarrow x< 1;3x-3>0\Leftrightarrow x>1\)
Ta có bảng xét dấu các đa thức x-1 ; 2x-2 ; 3x-3 sau :
X | 1 |
x-1 | - 0 + |
2x-2 | - 0 + |
3x-3 | - 0 + |
Xét khoảng \(x< 1\) ta có :
(1) \(\Leftrightarrow1-x+2-2x+3-3x=6\Leftrightarrow6-6x=6\Leftrightarrow x=0\) (Giá trị này thuộc khoảng đang xét )
Xét khoảng \(x>0\) ta có :
(1) \(\Leftrightarrow x-1+2x-2+3x-3=6\Leftrightarrow6x-6=6\Leftrightarrow x=2\) ( Giá trị này thuộc khoảng đang xét )
Vậy \(x=0\) và \(x=2\) thỏa mãn
Để \(A=\frac{3}{x+2}\) đạt được giá trị nguyên
=> 3 chia hết x+2
=> \(x+2\inƯ\left(3\right)\)
Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)
=> Ta lập được bảng sau:
x+2 | 1 | -1 | 3 | -3 |
x | -1 | -3 | 1 | -5 |
Vậy để \(A=\frac{3}{x+2}\) thì x = {-1;-3;1;-5}
CHÚC BẠN HỌC TỐT