Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left[18\frac{1}{6}-\left(0,06:7\frac{1}{2}+3\frac{2}{5}\cdot0,38\right)\right]:\left[16-2\frac{2}{3}\cdot4\frac{3}{4}\right]\)
\(< =>\left[18\frac{1}{6}-\left(\frac{1}{125}+\frac{323}{250}\right)\right]:\left[16-\frac{38}{3}\right]\)
\(< =>\left[18\frac{1}{6}-\frac{13}{10}\right]:\frac{10}{3}\)
\(< =>\frac{253}{15}:\frac{10}{3}\)
\(< =>\frac{253}{50}\)
a)\(\left(\frac{1}{5}\right)^{3n-1}=\frac{1}{25}\)
\(\Leftrightarrow\left(\frac{1}{5}\right)^{3n-1}=\left(\frac{1}{5}\right)^2\)
\(\Leftrightarrow3n-1=2\)
\(\Leftrightarrow3n=3\)
\(\Leftrightarrow n=1\)
b)\(\left(\frac{4}{7}\right)^{n+2}=\frac{7}{4}\)
\(\Leftrightarrow\left(\frac{4}{7}\right)^{n+2}=\left(\frac{4}{7}\right)^{-1}\)
\(\Leftrightarrow n+2=-1\)
\(\Leftrightarrow n=-3\)
c)\(\left(\frac{2}{3}\right)^{-n+1}=\frac{3^3}{2^3}\)
\(\Leftrightarrow\left(\frac{2}{3}\right)^{-n+1}=\left(\frac{3}{2}\right)^3\)
\(\Leftrightarrow\left(\frac{2}{3}\right)^{-n+1}=\left(\frac{2}{3}\right)^{-3}\)
\(\Leftrightarrow-n+1=-3\)
\(\Leftrightarrow n=-4\)
c)\(\left(0,7\right)^{3n+1}=10^3:7^3\)
\(\Leftrightarrow\left(\frac{7}{10}\right)^{3n+1}=\left(\frac{10}{7}\right)^3\)
\(\Leftrightarrow\left(\frac{7}{10}\right)^{3n+1}=\left(\frac{7}{10}\right)^{-3}\)
\(\Leftrightarrow3n+1=-3\)
\(\Leftrightarrow3n=-4\)
\(\Leftrightarrow n=-\frac{4}{3}\)
a, \(\frac{\left(\frac{1}{9}\right)^6\cdot\left(\frac{3}{8}\right)^7}{\left(\frac{1}{3}\right)^{13}\cdot\left(\frac{1}{2}\right)^{22}.3^6}\)
\(=\frac{\left(\frac{1}{\left(3^2\right)^6}\right)\cdot\left(\frac{1}{2}\cdot\frac{1}{2}\cdot\frac{1}{2}\cdot3\right)^7}{\left(\frac{1}{3}\right)^{13}.\left(\frac{1}{2}\right)^{22}.3^6}=\frac{\frac{1}{3^{12}}\cdot\left(\frac{1}{2}\right)^{21}\cdot3^7}{\frac{1}{3^{13}}\cdot\left(\frac{1}{2}\right)^{22}.3^6}\)
\(=\frac{3}{\frac{1}{3}\cdot\frac{1}{2}}=3\div\frac{1}{6}=3.6=18\)
b, Làm tương tự nha bn