Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
|\(x\)| = 1 ⇒ \(x\) \(\in\) {-\(\dfrac{1}{3}\); \(\dfrac{1}{3}\)}
A(-1) = 2(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)) + 5
A(-1) = \(\dfrac{2}{9}\) + 1 + 5
A (-1) = \(\dfrac{56}{9}\)
A(1) = 2.(\(\dfrac{1}{3}\) )2- \(\dfrac{1}{3}\).3 + 5
A(1) = \(\dfrac{2}{9}\) - 1 + 5
A(1) = \(\dfrac{38}{9}\)
|y| = 1 ⇒ y \(\in\) {-1; 1}
⇒ (\(x;y\)) = (-\(\dfrac{1}{3}\); -1); (-\(\dfrac{1}{3}\); 1); (\(\dfrac{1}{3};-1\)); (\(\dfrac{1}{3};1\))
B(-\(\dfrac{1}{3}\);-1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).(-1) + (-1)2
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) - 1 + 1
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\)
B(-\(\dfrac{1}{3}\); 1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).1 + 12
B(-\(\dfrac{1}{3};1\)) = \(\dfrac{2}{9}\) + 1 + 1
B(-\(\dfrac{1}{3}\); 1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3};-1\)) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).(-1) + (-1)2
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) + 1 + 1
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3}\); 1) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).1 + (1)2
B(\(\dfrac{1}{3}\); 1) = \(\dfrac{2}{9}\) - 1 + 1
B(\(\dfrac{1}{3}\);1) = \(\dfrac{2}{9}\)
a) thu gọn đi rùi tìm ngiệm nhưng chắc đa thức P(x) ko có nghiệm đâu!!!!
nghĩ thui
\(A=\frac{3}{\left(x+2\right)^2+4};\left(x+2\right)^2\in N\)
\(\Rightarrow A_{max}\Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow\left(x+2\right)^2+4=4\)
\(\Rightarrow A_{max}=\frac{3}{4}\)
b, \(B=\left(x+1\right)^2+\left(y+3\right)^2+1\)
Mặt khác: \(\left(x+1\right)^2;\left(y+3\right)^2\in N\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2\ge0\)
\(\Rightarrow B_{min}\Leftrightarrow\left(x+1\right)^2+\left(y+3\right)^2=0\Rightarrow B_{min}=1\)
\(A=\frac{3}{\left(x+2\right)^2+4}\)
Để A max
=>(x+2)^2+4 min
Mà\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+4\ge4\)
Vậy Min = 4 <=>x=-2
Vậy Max A = 3/4 <=> x=-2
\(b,B=\left(x+1\right)^2+\left(y+3\right)^2+1\)
Có \(\left(x+1\right)^2\ge0;\left(y+3\right)^2\ge0\)
\(\Rightarrow B\ge0+0+1=1\)
Vậy MinB = 1<=>x=-1;y=-3
a)\(\left|\frac{1}{4}+x\right|=\frac{5}{6}\)
=> Có hai trường hợp
TH1: \(\frac{1}{4}+x=\frac{5}{6}\) TH2: \(\frac{1}{4}+x=-\frac{5}{6}\)
<=> \(x=\frac{5}{6}-\frac{1}{4}\) <=> \(x=-\frac{5}{6}-\frac{1}{4}\)
<=> \(x=\frac{10}{12}-\frac{3}{12}\) <=> \(x=-\left(\frac{10}{12}+\frac{3}{12}\right)\)
<=> \(x=\frac{7}{12}\) <=> \(x=-1\frac{1}{12}\)
Vậy: \(x=\frac{7}{12}\) hoặc \(x=-1\frac{1}{12}\)
b) \(A\left(x\right)=5x^2-3x-16\)
Thay \(x=-2\) vào đa thức A(x), ta có:
\(A\left(-2\right)=5\cdot\left(-2\right)^2-3\cdot\left(-2\right)-16\)
\(A\left(-2\right)=5\cdot4-3\cdot\left(-2\right)-16\)
\(A\left(-2\right)=20+6-16\)
\(A\left(-2\right)=10\)
Vậy giá trị của đa thức A(x) tại x =-2 là 10
c) \(A=4x^2y^2\left(-2x^3y^2\right)\)
\(A=\left[4\cdot\left(-2\right)\right]\left(x^2\cdot x^3\right)\left(y^2\cdot y^2\right)\)
\(A=\left(-8\right)x^5y^4\)
Đơn thức A có:
- Hệ số là: -8
- Phần biến là: \(x^5y^4\)
- Bậc là: 9
a)
1/4+x=5/6 hoặc -5/6
1/4+x=5/6 suy ra x=7/12
1/4+x=-5/6 suy ra x=-13/12
b) thay x=-2 vào
suy ra A=5.(-2)2-3.(-2)-16
=10
c) A=-8x5y4. Hệ số -8. Biến x5y4. Bậc 9
Bài dễ sao ko động não tí đi