Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(2\left(m^2+n^2\right)-1=2\left(m^2+n^2+2mn\right)-1-4mn=2\left(m+n\right)^2-1-4mn\)
\(=2\left[\left(m+n\right)^2-1\right]-4mn+1=2\left(m+n-1\right)\left(m+n+1\right)-4mn+1-4m^2-4m+4m^2+4m\)
\(=2\left(m+n+1\right)\left(-m+n-1\right)+\left(2m+1\right)^2\)
Suy ra \(\left(2m+1\right)^2⋮\left(m+n+1\right)\)mà \(m+n+1\)nguyên tố nên \(2m+1⋮m+n+1\)
do \(m,n\)nguyên dương suy ra \(2m+1\ge m+n+1\Leftrightarrow m\ge n\).
Một cách tương tự ta cũng suy ra được \(n\ge m\).
Do đó \(m=n\).
Khi đó \(mn=m^2\)là một số chính phương.
Đặt A = \(\sqrt{n}+\sqrt{n+4}\)
=> \(A^2=n+n+4+2\sqrt{n\left(n+4\right)}\) = \(2n+4+2\sqrt{n\left(n+4\right)}\)
Vì n nguyên dương nên 2n + 4 nguyên dương
Mặt khác n(n+4) >0 , không là số chính phương nên \(\sqrt{n\left(n+4\right)}\) , không phải số nguyên dương
=> \(2\left(\sqrt{n\left(n+4\right)}\right)\) không phải số nguyên dương
=> A2 không phải số nguyên dương => A không phải số nguyên dương ( đpcm)
============================
Gọi 5 số nguyên dương đã cho là K1, K2, K3, K4, K5 (phân biệt từng đôi một).Ta có :
K1 = 2^(a1).3^(b1)
K2 = 2^(a2).3^(b2)
K3 = 2^(a3).3^(b3)
K4 = 2^(a4).3^(b4)
K5 = 2^(a5).3^(b5)
(a1,a2,a3,... và b1,b2,b3,... đều là số tự nhiên)
Xét 4 tập hợp sau :
+ A là tập hợp các số có dạng 2^m.3^n (với m lẻ, n lẻ)
+ B là tập hợp các số có dạng 2^m.3^n (với m lẻ, n chẵn)
+ C là tập hợp các số có dạng 2^m.3^n (với m chẵn, n lẻ)
+ D là tập hợp các số có dạng 2^m.3^n (với m chẵn, n chẵn)
Rõ ràng trong 5 số K1, K2, K3, K4, K5 chắc chắn có ít nhất 2 số thuộc cùng 1 tập hợp ví dụ Ki và Kj
Ki = 2^(ai).3^(bi) và Kj = 2^(aj).3^(bj) ---> Ki.Kj = 2^(ai+aj).3^(bi+bj)
Vì Ki và Kj thuộc cùng 1 tập hợp ---> ai và aj cùng tính chẵn lẻ, bi và bj cùng tính chẵn lẻ ---> ai+aj và bi+bj đều chẵn ---> Ki.Kj = 2^(ai+aj).3^(bi+bj) là số chính phương.
n^2 -m nha. ko phải n-m đâu. so sorry