một cục đá có thể tích 540cm3 nổi trên mặt nước. Tính thể tích của phần cục đá ló...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2021

Đổi 360 cm3= 0,00036 m3

Trọng lượng của cục đá là

0,0036.920=3,312 (N)

Thể tích của cục đá là:

\(V=\dfrac{P}{d}=\dfrac{3,312}{1000}=0,000312\left(m^3\right)=331,2\left(cm^3\right)\)

Thể tích của phần cục đá ló khỏi mặt nước là

\(360-331,2=28,8\left(m^3\right)\)

 

22 tháng 12 2021

hmm tớ k chắc lắm nhá

8 tháng 1 2021

\(P=F_A\Leftrightarrow d_{da}.V=d_{nuoc}.V_{chim}\Leftrightarrow D_{da}.V=d_{nuoc}.\left(V-V_{noi}\right)\)

\(\Rightarrow V_{noi}=...\left(m^3\right)\)

24 tháng 12 2020

Bài 2:

Ta có: FA=P-P'=3,4-2,5=0,9(N)

Mà \(F_A=d.V=10000.V=0,9\)

\(\Rightarrow V=9.10^{-5}\left(m^3\right)\)

25 tháng 12 2020

Bạn biết làm bài 1 không ? giúp mình luôn với ạ :(

6 tháng 1 2022

\(0,92g/cm^3=9200N/m^3\)

Vì cục đá chỉ chìm 1 phần nên \(F_A=P\)

\(-> d_n.V_C=d_v.V\)

\(->\dfrac{d_n}{d_v}=\dfrac{V}{V_C}\)

\(-> \dfrac{10000}{9200}=\dfrac{V}{V_C}\)

\(-> \dfrac{25}{23}=\dfrac{V}{V_C}\)

\(-> V_C=\dfrac{V}{\dfrac{25}{23}}\)

\(-> V_C=\dfrac{500}{\dfrac{25}{23}}\)

\(-> V_C=460(cm^3)\)

Có \(V_n=V-V_C=500-460=40(cm^3)=4.10^{-5}(m^3)\)

 

6 tháng 1 2022

Tham khảo

 

 

5 tháng 12 2021

Gọi thể tích của cả cục đá là V

Thể tích phần cục đá nổi khỏi mặt nước là V1

D1 là khối lượng riêng của nước

D2 là khối lượng riêng của đá

V = 360 cm3 = 3,6.10-4 (m3)

D2 = 0,92g/cm3 = 920kg/m3

D1 = 1000 kg/m3

Trọng lượng của cục đá là:

P = V.d2 = V.10D2 = 3,6.10-4.10.920= 3,312(N)

Lực đẩy Asimec tác dụng lên phần đá chìm là:

FA = Vch.d1 = (V-V1).10D1 = (3,6.10-4 - V1) .10000

Khi cục nước đá đã cân bằng nổi trên mặt nước thì

P = FA

3,312 = (3,6.10-4 - V1) .10000

=> 3,6.10-4 - V1 =3,312.10-4

=> V1 =2,88.10-5(m3) = 28,8 cm3

Vậy thể tích phần đá nổi lên khỏi mặt nước là 28,8 cm3

4 tháng 5 2017

Đáp án C

14 tháng 1 2022

Đổi 0,92 g/cm3 = 9200 N/ m3

\(\Rightarrow d_n.V_C=d_v.V\\ \Rightarrow\dfrac{d_n}{d_v}=\dfrac{V}{V_C}\\ \Rightarrow\dfrac{25}{23}=\dfrac{V}{V_C}\\ \Rightarrow V_C=\dfrac{V}{\dfrac{25}{23}}\\ \Rightarrow V_C=\dfrac{500.23}{25}=460\left(cm^3\right)\)

\(\Rightarrow500-460=40\left(cm^3\right)\)

 

 

14 tháng 1 2022

Vì cục đá chỉ chìm 1 phần nên `F_A=P`

`-> d_n.V_C=d_v.V`

`->`\(\dfrac{10000}{9200}=\dfrac{V}{V_C}\)

`->` \(\dfrac{25}{23}=\dfrac{V}{V_C}\)

`->`\(V_C=\dfrac{V}{\dfrac{25}{23}}\)

`->`\(V_C=\dfrac{500}{\dfrac{25}{23}}\)

`->`\(V_C=460(cm^3)\)

Có `V_n=V-V_C=500-460=40(cm^3)=0,0004(m^3)`

25 tháng 11 2021

\(540cm^3=5,4\cdot10^{-4}m^3\)

\(0,92\left(\dfrac{g}{cm^3}\right)=920\left(\dfrac{kg}{m^3}\right)\)

Ta có: \(\left\{{}\begin{matrix}d_{da}=10D_{da}=10\cdot920=9200\left(\dfrac{N}{m^3}\right)\\P=d_{da}\cdot V=9200\cdot5,4\cdot10^{-4}=4,968\left(N\right)\end{matrix}\right.\)

\(\rightarrow F_A=dV_{chim}=10000V_{chim}\)

Khi vật cân bằng trong nước: \(P=F_A\Leftrightarrow4,968=10000V_{chim}\)

\(\rightarrow V_{chim}=4,968\cdot10^{-4}m^3\)

\(\Rightarrow V_{noi}=V-V_{chim}=5,4\cdot10^{-4}-4,968\cdot10^{-4}=4,32\cdot10^{-5}m^3=43,2cm^3\)

20 tháng 8 2018

Đáp án B