Đặt vật sáng AB vuông góc với trục chính của một thấu kính phân kì có tiêu cự S =...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2022

Ảnh thật, ngược chiều và lớn hơn vật.

Khoảng cách từ ảnh đến thấu kính:

\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow\dfrac{1}{20}=\dfrac{1}{30}+\dfrac{1}{d'}\Rightarrow d'=60cm\)

Chiều cao ảnh:

\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{5}{h'}=\dfrac{30}{60}\Rightarrow h'=10cm\)

24 tháng 3 2022

Khoảng cách từ ảnh đến thấu kính:

\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow\dfrac{1}{20}=\dfrac{1}{30}+\dfrac{1}{d'}\Leftrightarrow d'=60cm\)

Độ cao ảnh:

\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{2}{h'}=\dfrac{30}{60}\Rightarrow h'=4cm\)

9 tháng 5 2023

Khoảng cách từ ảnh đến thấu kính là:

Áp dụng công thức tính thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow d'=\dfrac{d.f}{d-f}=\dfrac{40.20}{40-20}=40\left(cm\right)\)

Chiều cao của ảnh là:

Ta có: \(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow h'=\dfrac{h.d'}{d}=\dfrac{20.40}{40}=20\left(cm\right)\)

9 tháng 5 2023

Khoảng cách từ ảnh đến thấu kính:

Ta có: \(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow d'=\dfrac{h'.d}{h}=\dfrac{1,2.40}{20}=2,4\left(cm\right)\)