Cho ΔABC vuông tại A, AB = a. Các đường trung tuyến AM và BN vuông góc với nhau. T...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2023

Gọi \(I\) là giao điểm của \(AM\) và \(BN\Rightarrow IB=\dfrac{2}{3}BN;IN=\dfrac{1}{3}BN;AI=\dfrac{2}{3}AM;IM=\dfrac{1}{3}AM\)

\(\Delta ANB\) vuông tại \(A:AI^2=IB.IN\) \(\Rightarrow AI^2=\dfrac{2}{3}BN\cdot\dfrac{1}{3}BN=\dfrac{2}{9}BN^2\)

Ta cũng có trong \(\Delta ANB:AB^2=IB.BN\)

\(\Leftrightarrow a^2=\dfrac{2}{3}BN\cdot BN=\dfrac{2}{3}BN^2\Leftrightarrow BN^2=\dfrac{3}{2}a^2\)

Suy ra : \(AI^2=\dfrac{2}{9}BN^2=\dfrac{2}{9}\cdot\dfrac{3}{2}a^2=\dfrac{1}{3}a^2\).

Lại có : \(AI=\dfrac{2}{3}AM\Rightarrow AM^2=\dfrac{9}{4}AI^2=\dfrac{9}{4}\cdot\dfrac{1}{3}a^2=\dfrac{3}{4}a^2\)

\(AM\) là đường trung tuyến ứng với cạnh huyền \(BC\) của \(\Delta ABC\) vuông tại \(A\Rightarrow AM=\dfrac{1}{2}BC\Rightarrow BC^2=4AM^2=4\cdot\dfrac{3}{4}a^2=3a^2\)

\(\Rightarrow BC=\sqrt{3a^2}=a\sqrt{3}\)

\(\Delta ABC\) vuông tại \(A\) có : \(BC^2=AB^2+AC^2\left(Pythagoras\right)\)

\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{3a^2-a^2}=a\sqrt{2}\)

Vậy : \(AC=a\sqrt{2};BC=a\sqrt{3}\)

1 tháng 6 2023

8 tháng 8 2020

gọi I là trọng tâm của tam giác ABC ta có AI vuông góc với BI

dễ thấy \(AB^2=BI\cdot BN\)

mà \(BI=\frac{2}{3}BN\)(I là trọng tâm)

\(\Rightarrow a^2=\frac{2}{3}BN^2\)

dễ thấy \(AN^2=IN\cdot BN=\frac{1}{3}BN\cdot BN=\frac{1}{3}BN^2=\frac{a^2}{2}\)

suy ra \(AC=\sqrt{2}a\)

\(BC^2=AB^2+AC^2=a^2+2a^2=3a^2\Rightarrow BC=\sqrt{3}a\)

DD
21 tháng 6 2021

Xét tam giác \(BGA\)vuông tại \(G\)

\(BA^2=BG^2+GA^2=\frac{4}{9}\left(BE^2+AM^2\right)\Leftrightarrow BE^2+\frac{BC^2}{4}=\frac{27}{2}\)(1)

Xét tam giác \(ABE\)vuông tại \(A\)

\(BE^2=AB^2+AE^2=6+\frac{1}{4}AC^2\)(2)

Từ (1) và (2) suy ra \(BC^2+AC^2=30\)

mà \(BC^2=AC^2+6\)

suy ra \(BC^2=18\Rightarrow BC=3\sqrt{2}\left(cm\right)\).

22 tháng 6 2016

bài 1) dùng tỉ số lượng giác lần lượt tính được AD=\(10\sqrt{3}cm\);AC=\(20\sqrt{3}cm\);AB=20cm

do đó Shình thang=\(\frac{\left(AB+CD\right)\cdot AD}{2}=\frac{\left(20+30\right)\cdot10\sqrt{3}}{2}=\frac{500\sqrt{3}}{2}cm^2\)

14 tháng 7 2016

Bài này AB= 40 cm chứ không phải là 20 cm